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ABSTRACT : Applying mathematical and quantum mechanical techniques, this study develops numerical 

solutions to Webster's horn equation, which describes the sound inside brass instruments in acoustics. The 

wavenumbers and wave functions of the modes in the system are evaluated by perturbation theory, assuming 

a solvable system with relatively small perturbations. An obvious solvable example is a straight pipe, whose 

wavenumbers can be perturbed by varying the radius of the horn. Maintaining the second-order corrections, 

the method generated astonishingly accurate results for varying horn shapes. Moreover, in tests of various 

pipe shapes, the perturbation method required far fewer computational resources than the finite element 
method. Two analytically solvable shapes and two non-solvable models (one of them is a periodic shape 

described by a trigonometric function) are analyzed. The results imply the applicability of the method to 

highly non-solvable systems.

Keywords : Webster's Horn Equation, Perturbation Theory, Brass Instruments, High Accuracy Solutions

(Received June 8, 2018)

1 INTRODUCTION

 Lately, sophisticated tools designed for solving nonlinear 

problems have been successfully applied to studies of wind 

instruments. In particular, these tools can analyze the resonance 

phenomena and predict the sound propagation and reflection 

inside finite spaces such as pipes)) A typical application reveals 

the dynamic function of the register hole on the clarinet, which 

comprises a two-delay system.2) 

  However, the sound making methods and resonance 

mechanisms of musical instruments have not been sufficiently 

unravelled.1) 3) Even simply structured instruments such as 

recorders remain incompletely understood. Therefore, 

investigating these mechanisms is essential for the research and 

development of wind instruments. One promising approach 

toward a precise and manageable design method for specific
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instruments is the technique in quantum mechanics, which 

naturally describes wave dynamics. The expected close 

relationship between acoustics and quantum mechanics should 

 exactly fulfil our intention.4> 

  As a representative brass instrument, a trumpet can be 

divided into three parts: a lead pipe, a piston unit and a horn 

(also called a bell).1)'3) The lead pipe amplifies the sound, the 

pistons control the pitch and the horn acts as a speaker. 

Additionally, the horn is easily manufactured in various sizes 

and shapes, and from a variety of materials. Indeed, the horn is 

merely the aperture of the instrument, and its tone is easily 

supplemented by distinguishing characteristics. 

 The normal modes and frequencies of the horn can be altered 

by adjusting the horn structure. Understanding the relationship 

between the modes and structure of a horn is crucial in 

instrument manufacture. The pressure changes inside the horn 

are well approximated by Webster's horn equation,5)'6) which is 

generally solved by numerical methods; analytical solutions 

can be obtained only in some special cases. However, the 

balance of the musical instrument can be disrupted by
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numerical errors, which are unavoidable in numerical analyses. 

 In this work, we approach the acoustics in a horn from a 

quantum mechanics perspective. The perturbation method, 
 which derives the solutions of Schrodinger equation with small 

perturbations,7) can evaluate the modes of brass 

instruments.8>'9) For various horn shapes, the approximate 

solutions computed by perturbation theory are far more 

accurate than those of ordinary numerical methods such as the 

finite element method (FEM)Iom 0 and the eigenfunction 

expansion method.6'12)'13) 

Although quantum physics underlies the modern science of 

the twentieth century, the perturbation method was originally 

developed to explain the motions of planets in the solar system, 

and stars in galaxies, and similar problems in classical 

astrophysics.14> 

 The Webster's equation, which describes the sound in a pipe 

with varying radius,10> can be mathematically likened to a 

perturbed Schrodinger equation.8)'9) Thus, perturbation theory 

can be applied to the acoustics of brass instruments. 

Perturbation theory divides the system into a non-perturbative 

and a perturbative part. The former part usually admits an exact 

solution, whereas the latter is expressed as an asymptotic series 

expansion with respect to the perturbation term, assuming a 

sufficiently small perturbation strength. This formulation gives 

an approximate solution to systems with no exact analytical 

solutions. 

  Our system treats the horn structure as a straight pipe 

(exactly solvable) with some deformations (perturbations), 

which model the deformation of the stationary states. The 

method returns precise results for the rotation volumes (one 

revolution around the x-axis) of four horn structures, 

proportional to e x , 1/x, 3+ cos x , and ln(x) (x>0). Ordinary 
numerical methods such as FEM usually perform best in the 

lower frequency region, because the lattice constant must be 

smaller than the wavelength. In contrast, the perturbative 

method usually achieves better results in the higher frequency 

region than FEM. 

2 WEBSTER'S EQUATION AND SCHRODINGER 

  EQUATION

  Sound is the physical phenomenon manifesting from the 

propagation of pressure changes through a medium such as air. 

If the wavelength is sufficiently larger than the horn diameter, 

the propagation becomes essentially one-dimensional and is

regarded as a plane wave. Taking the x-coordinates along the 

center axis of the horn, and the two apertures (bottoms) at x = 

a, b, Webster's equation of the sound pressure is given by 15: 

 a's(x)aP(,r)`s(~
~         )a~(~,t) (1)  ax, 

S(x) . 1

 x

  x=a i. 

 x=b 

FIG. 1. Outline of the pipe to be used in Webster's equation

where P(x,t) is taken here as the acoustic or excess pressure, 

which is the pressure difference from the static one, S(x) 

represents the varying cross-sectional area of the horn part 

(FIG.1), c is the speed of sound, and t is time. 

The Schrodinger equation for an exactly solvable system 

with Hamiltonian H0 is given by 

H0VI0 ,n = E0,nyI0,n ,(2) 

where Vnis an eigenstate of the solvable system with 

eigen-energy E0,n• The Schrodinger equation with a small 

perturbation H1 then becomes 

Hyin = (H0 + H1) vin = Eyi . (3) 

The term H1 can be any suitable term, such as a potential 

energy, an interaction term or a perturbative part. 

 Quantum mechanics is a powerful tool for handling systems 

that satisfy the perturbation equation (3). Perturbation theory 

derives the energy spectra and wavefunctions of perturbative 

systems from those of the solvable system, adding correction 

terms generated by expanding the perturbation. Traditional 

quantum mechanics7 gives the second-order energy correction 

as 

2 
                     (1VO,kVil1VO,n)((4)  En =EOn+(VO,nVHlVO,n)—~4 

                            knEO,n –EO,k 

and the first-order correction of the wave function as 

        1(1VO,kVii i'O,n)   Yin= iVOn+1VO,k .(5) 
          knEO,n —EO,k

—2—
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 Later, we will apply the one-dimensional Schrodinger equation 

with a potential V (x) 

    2 

 – h  a
2+ V (x)Yin = Enyin ,(6)    2m ax 

where h is the Planck constant and m is the mass of the 

particle that follows Eq. (6). Comparing Eqs. (3) and (6), we 

find the general relations 

h2 a2 H
o=--------H1=V, H=H0+V.(7) 2m ax2 

Therefore, we expand the perturbation with respect to V. 

3 PERTURBATION THEORY FOR WEBSTER'S 

EQUATION8'9

  To clarify the resemblance between the Webster's and 

Schrodinger equations, we try a change of variables in 

Webster's equation (1) as follows: 

'Fn (x,t) = Pn (x,t) jS(x)(8) 

r (x) = vIS (x) ,(9) 

where r is clearly proportional to the radius of its cross-section 

at x. The time dependence of P is separated by the factor eiwt 

Pn (x ,t) = Pn (x)eiwt(10) 

Here 0) is the angular frequency and 

k = (11) 

is the wavenumber of the wave. The equation (1) then 

transforms into 

 –d2 yin
2+r„y'_kn2yin(12)   dxr 

where the eigen- "wavefunction": iin (x) is also introduced as 

gin (x,t) _ vin (x)eiwt(13) 

Putting E n=k,72  and h = 2m =1 , we obtain Schrodinger 

equation for one dimensional scattering (6), where k2 

                                                                                            n expresses the energy of the particle and the potential energy 

V (x) becomes r"/r . Note that n labels the eigen-
wavenumber kn and the eigen-energy En in a finite region, 

i.e., within the space of the brass instrument. The Hamiltonian 

of the system becomes 

             d2 r„ H=H0+V=–
2+—(14)          dxr 

Thus, the potential energy term r"/r plays a perturbative role.

Different from Schrodinger equation, we do not normalize 

yin (x) , because the term yin (x)IIS(x) represents the sound 
pressure at x. Therefore, the normalization would remove some 

important information. 

 Perturbation theory is applicable when the contribution of 

the perturbation H1 = V = r is relatively small. To obtain 

the difference between k0,n2 of the straight pipe and kn2 

with a second-order perturbation V, we modify Eqs. (4) and (5) 

as 

                                          2 
                                                 Y 

   ~)_~1-------------   z 21Y"                                    —1 , (15)   k
n = k0+YnYiO,nYY~O,nrk22Yn 

                          mnk0,n— k0,m 

                               r" 
       Y1O,m rY1O,n16 
 Y/n =1110,n +2 2 7nYO,n() 

              m�n kO,n -kO,m 

where the symbols in (15) and (16) are respectively defined as 

   r"b r" 

 (1ff 0,n ,m) ' VO,n —vto,mdx(17) 
                                                a and 

      b  Yn=~1VO,n2dx•(18) 
a The factor yn is introduced for acoustical applications. In 

quantum mechanics, the wavefunctions yin must be 

normalized as yn =1 , because yin (x)2 dx represents the 

probability that a corresponding particle exists in the range 

[x, x+dx] . Therefore, integrating all probabilities of a particle 
existing in that region, we obtain 

Jb a2(l ,(19) 

   implying that the particle is somewhere inside the whole range 

[a, b] . 
 As a non-perturbative system, we solve Webster's equation 

in a straight pipe. The non-perturbative system should be 

solvable and admit a series of analytical and exact solutions 

vn(x) 
 A straight-pipe system is obtained by neglecting the potential 

energy term r"/r . The solution of the non-perturbed Eq. (12) 

is 

 1VO,n (x) = An cos (kpnx) + Bn sin (kpnx) . (20) 
The boundary condition quantizes the wavenumber k. The 

general solution for the straight pipe, obtained by summing the 

kn , is the following Fourier decomposition, as expected:

—3—
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 1'o(x)=L1'O,n(x) 
n(21) 

     = L{An cos(ko nx)+Bn sin(ko,nx)} 

n As the horn is open-ended at both sides, u must be 0 at both 

ends x = a and x = b . Thus, the boundary conditions are 

tan (ko,na) = tan (ko,nb) = - An 1B ; equivalently, 
sin {k (b - a)} = 0 . Thus, the wavenumbers are quantized as 

  n7cnic() k
0'n22      b -a L 

Under this boundary condition, Eq. (21) becomes 

11/o =I Bn {sin (ko nx)-tan(ko n)cos(ko nx)} (23) 

n Eq. (22) also offers the eigen-frequency 

fo,n = cko n /271" = en/2(b - a) of the sound wave in the straight 

pipe.

(al

Solvable system
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FIG. 2. Schematics of (a) a solvable straight pipe and (b) a 

      perturbative pipe. The x-coordinate is aligned along 

      the rotational symmetry axis of the horn. In both cases, 

r(a)=Rand b-a=L. 

4 NUMERICAL CALCULATION MODELS

  The shape of a horn pipe can be modeled by various 

functions. In this paper, we apply perturbation theory to horns

of various shapes. Each shape is determined by rotating a body 

defined by the function r(x) around the x-axis. For each shape, 

we compare the solutions of the straight pipe and the varying 

horn (calculated by perturbation theory)(FIG.2). The solutions 

are also compared with those of typical numerical methods. If 

the exact solution is obtainable, comparisons between the exact 

and perturbative solutions will validate or invalidate the 

perturbation method. 

  To test the accuracy and efficiency of our method, we 

compare our results with those of FEM10,11. The lattice 

constant is set to AK = 0.001 . The energy E = k2 is 

incremented by AE = A(k2) = 0.0002 , and the eigenstates are 

searched. 

 The accuracy of FEM usually deteriorates at higher energies, 

where the wavelength becomes comparable to or smaller than 

the lattice constant Ax . Therefore, computational approaches 

can only roughly approximate the physical phenomena in high-

energy regions. The lattice constant must be set sufficiently 

small to prevent this degradation. The wavelength of the non-

perturbative system A0, n= 27z/ko,12 = 2L/n reduces as L 

shortens and/or n increases. In our work, the shortest 

wavelength is 4 ,30 = 2 x 1/30 = 0.06667... » Ox for L= 1 and n = 
30. Note that 20,30 is more than sixty times larger than Ax . 

 The x-coordinate of Webster's equation must align along the 

axis of rotational symmetry of the pipe (namely, through the 

center of the pipe). In the perturbative systems, the shapes of 

the horn pipe are given by the following functions (see FIG. 3): 

(a) r (x) = e-x 

(b) r (x) =1/x(24) 

(c) r(x)=3+cosx 

(d) r(x)=lnx . 

The left and right ends of the pipe are located at x = a and 

x = b , respectively. The pipe length is L=b-a . To ensure 

that the pipe shape changes gradually along its length, we select 

L = 1, 2,... ,10 , and determine the wavenumbers k and 

wavefunctions'n for n= 1,  2,... , 30 . 

The end positions are set to a= 0, b= L for potential 

shapes (a) and (c), a= 1,  b = L + 1 for shape (b) and 

a = e, b = e+L for shape (d). When a=0  , the boundary 

conditions reduce to the simple forms An = 0 and 

tan (k120 b) = 0 , and the result becomes Eq. (22). 
This section focuses on V n rather thanPn = vn l j , 

because the effect of varying the radius is much easier to 

distinguish in ln than in pressure. Different from their usual

—4—



 definitions, both "energy" and "potential" have units of m-2   and 

are so named only by mathematical analogy between the 

Webster's and the Schrodinger equations.

 r (x)

=L „' 
0b

r (x) = e-x (a)

 '.L0 
Ib

r(x)=

 r

r(x)=3+cosx
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A. Potential (a): r(x) = ex 
In this case r"/r =1 is a constant "potential", and Webster's 

equation becomes 

  d2d'n(kn2 _ l)vn.(25) 
dx2 

The spectrum is essentially that of the straight-pipe potential 

r(x) = 0 (FIG. 4), but with kn2 , in the right-hand side 

replaced by k 2 - 1 . Similarly, the "eigen-energies" of 

r (x) = e-x are those of the straight pipe shifted by -1. The 
"energies" of the perturbation results differ from the exact 

solution by 
                    2 

 AEn2 = (knxt)2(kPert)2(26)

 r(x)

 I. L_,..1 

elb

x

r(x)=1nx 

Schematics of the pipe shapes investigated in 

perturbation study: (a) r(x) = e-x , (b) r(x) =1/x , 
r(x)=3+ cos x, (d)r(x)=1nx.

the 

(c)
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r^1.0E-052 
 b{(knxt)2 _ (k~`EM)2) 

 `J 1.0E-08j(knxt)2 _(knert)212 
.~ 1.0E-11I) 
<I 

1.0E-17 
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(a) L=1 
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N 

   IE 1.0E-06 

  CV1.0E-09 

  41.0E-12 
1.0E-15 

1.0E-18 
      0 5 10 15 20 25 30 

                  Vibration mode : n 

              (b) L=8 

FIG. 4. With r (x) = e , squares of eigen energy(kn2) 
      deviations by the perturbation method and FEM from 

the exact solution are illustrated: (a) L=1, (b) L=8. The 
deviations of FEM are almost 101° times larger than 

      the perturbation. The deviations AEn2 are defined 
     in Eqs. (26) and (27). 

where knXt = jkOn2 _ 1 is the exact solution of Eq. (25), and 
kPert is the wavenumber derived by our method, setting the 
"potential" r"/r =1 . The FEM results knFEM differ from the 
exact solution by

FIG.3.
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 AEn2_(knxt )2 —(kkEM)22(27) 

 where kn EM is the wavenumber obtained by FEM. 

 The calculation which can be estimated in this case, because 

the exact solution is obtainable. The deviation result AEn2 of 

the perturbation method is strikingly superior (by 10 orders of 

magnitude) to the FEM result. The deviations from the exact 

squared "energies" approach the precision limit of the 

computational program (FIG. 4). Of course, the wavefunctions 

are identical to those in a straight pipe. 

B. Potential (b): r(x)=1/x 
In this case, r"/r= 2/x2 is a monotonically decreasing 

function ofx. This case is also exceptional, because its equation 

  _d22n + 2 yin = kn2~n .                              (28) 
  dxx 

can be solved analytically. The solutions are linear 

combinations of the Bessel function 

        2 ~sinx  J3 (x) _—cos x and the Neumann function 
2Tcxx 

    / 

N3 (x)=J _3 (x)=—?sin x+cosx 
2271"x \x • 

n (x) = AnJ3 (knx)+BnN1 (knx) .(29) 
22 

The boundary condition yin (a) = yrn (b) = 0 then becomes 

 Nz(kna)N3(knb) An  
 J2(kna)J2(knb)B(30) 

and k is properly determined8). In terms of kn, the boundary 

condition is written as 

 tan{kn (b—a)} =kn (a+b)     2(31)                 k
nab—1 

 The exact spectrum can be numerically computed by Eq. 

(31). The squared eigen-energy deviations (relative to the exact 

solution) are plotted in FIG. 5. Again, the spectrum computed 

by the perturbation method is almost perfect. The error 

approaches the precision limit of the computer program, 

especially at shorter lengths(FIG. 5 (a)). The wavefunctions are 

also well evaluated (FIGs. 6 and 7). When L is small, the 
"potential" exerts negligible effect because the "energy" is high. 

On the other hand, larger L reduces the "energy" and the 

wavefunction becomes more sensitive to the "potential". In 

fact, as kn2 ,k00,2=(nr/L)2,the "energy" is roughly proportional 

to the inverse square of the length of the pipe: L-2. For fixed L, 

the distortion becomes more serious as n reduces.

u 
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 FIG. 5. Potential r(x) = 1/x. Shown are the squared eigenenergies 

      (k„2) calculat 

      relative to the 

  n=1 
           1.6 

    1.4— Straight pipe 
                    1.2— Horn pipe 

      ~'1 

     O 0.8         co0.6 
   w            0.4 
      ct0.2 

        0 
  11.52 
                      x[m] 

                 (a) L=1 
           0.6 

                                 — Straight pipe 

  Z0.5— Horn pipe 
       b. 0.4 

      O 0.3 
        •
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      >0.1 
         0 

 1611 
                      x[m] 

                (b) L=10 

FIG. 6. Potentialr(x) = 1/x, showing the wave- functionsy'n=1 

     in the horn pipe and straight pipe for: (a) L=1, (b) L=10.

5 10 15 20 25 30 
   Vibration mode : n 

   (b) L=10 

1/x. Shown are the squared eigenenergies 

f xl by the perturbation method and FEM,
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 --- ~1 .9 
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•0.9 0 
*-= 0.4 

-0.1 

cD -0.6 

-1.1 

-1.6

— Straight pipe 

— Horn pipe

  11.52 
 x[m] 

(a) L=1 
                                    — Straight pipe 

   o.s—Horn pipe 
                             • •     z0.4, • Y 0 , ft 4 $$• 

0.3 
0.2 
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4, -0 .1 

w -0.2 
     C'-0.50O~OO~~O•   0.4 ,0 • 

        3 -0.6 
1611 

x[m] 

(b) L=10 

FIG. 7. Potential r(x) = 1/x, showing the wave- functions 

yrn_27 in the horn pipe and straight pipe for: (a) L=1, 

(b) L=10 

. Potential (c): r (x) = 3 + cos x 
In this case, the "potential" r"/r becomes 

rn COSx 1  

 r3 + cos x1 + 3(32) 
                   cos x 

This is a periodic function with period 27r (FIG. 8). Different 

from the three other potentials examined in this work, which 

are monotonically decreasing or increasing, this potential 

imposes its periodicity on the wavefunction. In quantum 

mechanical terms, this potential describes one-dimensional 

scattering.

5 

4 • 

3 

2 

1 

0 

0 
-1

 ---r Y"/r

FIG. 8.

0

 xi ml 

Pipe radius r (x) = 3 + cos x and "potential 

r"/r = — cos x/(3 + cos x) are plotted for pipe shape (c).

In the case n=1 (FIG. 9), the "energy" is approximately 

calculated as k12 k0,12 =(ir/L)2 . When L=1, the energy 
becomes kt2 =R-2,  9.870..., much larger than the "potential" 

energies, which range from -0.25 to 0.5. Therefore, the 

"potential" exerts minimal effect on the wavefunction
. 

However, in the longer pipe with L=10, the "energy" deceases

to k12 (410)2 0.09870... , in the middle of the 

n=1 

1.5 — Straight pipe 

— Hom pipe 

a 0.5 

            V 

            7 

    0.51 
x[mJ 

(a) L=1 

— Straight pipe 

— Horn pipe 

  10: _Aar 
      0 2 4 6 8 10 

x[mI 

(b) L=10 

                  0.6 
£— Straight pipe 

- Horn pipe 
g.0.4 

V I 0.2 

0 
0510 15 

x[mI 

(c) L=15 
                   0.5 

— Straight pipe 

    z 0.4-Hom pipe 

           frv' cg 0.2 

i, 0.1 

0 

      0 510 15 20 
x[mI 

              (d) L=20 

FIG. 9. Potential r (x) = 3+ cos x , showing the wave functions 

Vn=1 for (a) L=1, (b) L=10, (c) L=15 and (d) L=20. 

      The peaks of the wave- functions appear close to the 

bottoms of the potentials: x = 27-c(= 6.283...) , 

47r(=12.57...) and 67r(=18.85...) .
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"potential" energy range (32). Consequently, the wavefunction 

 is enhanced near the bottom of the "potential" r"/r , and 

diminished around the peaks. In quantum mechanical terms, 

the wavefunction defines the probability that a particle will be 

found at a specific point in the system. The peaks indicate 

regions of low probability of finding a particle. Particles are 

most likely to exist in the bottoms of the "potentials". 

 In FIG. 9, the waves in longer horns exhibit multiple peaks 

imposed by the periodic "potential". All wavenumbers are 

n =1 , denoting ground states or first modes. The pressure 

P(x,t) can be enumerated from the wavefunction (x ,t) 

by Eq. (8). The pressures exhibit a single peak (FIG. 10), which 

typifies the first mode in a finite region. 

0.20.6

E 

E 0.1 
ytA

0

FIG. 10.

FIG.
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0.4 
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\ 0 
0510 15 

x]m] 

Pressure P(x) and wavefunction >/rn (x) 

potential r"/r = — cos x/(3 + cos x) with n 
L=15. The pressure has just a single peak, all 
is quite distorted. 

n=27 
   _-Straight pipe -Hom pipe   E1.5 . . . . . . . .

 l 

c 0.5 
0 u 0 
a -0.5 

Rd >-1 
   -1.5

E 0.5 

y 0 
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E 
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0 
U

x) in the 

n=1 and 

although it

0            0.5 
 x[m] 

(a) L=1 
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 0510 
x(m] 
             (b) L=10 

11. Potential r (x) = 3 + cos x , showing the wavefunctions 

Y n=27 for: (a) L = 1 and (b) L = 10. In case (b), the 

   wavefunction is slightly affected by the "potential".

In the higher mode n=27 (FIG. 11), k272 r-z,k0272 =(27ir/L)2 

exceeds the "potential". For example, if L=1, then 

k272 k0,272 =(272r)2 7200 , outrageously larger than the 
"potential" . In this case, the wavefunction is barely influenced 

by the "potential" (FIG. 11). Even in the longest horn examined 

in our work (L=10), k272 72 is considerably larger than the 
"potential" . To observe this apparently unusual wave distortion, 

we require an unrealistically long horn (e.g., L=100).

D. Potential (d): r(x) = ln(x) 
The "potential" r"/r = —1/(x21n x) becomes very small 

and negative in the range [e, e+L] (r"/r = —0.1353... at 
x = e ), and gradually approaches the x-axis. Initially, we 
simply multiply the representative potential (a) by —1/1n x • 
Of course, the shape changes drastically toward small x, but 

this region is discarded. In the valid range, this potential varies 

much more slowly than the other potentials. As already 

explained, the energy is also much higher than the potential, so 

the wavefunction resembles that of the straight pipe over the 

whole parameter range tested in this study (FIGs. 12 and 13). 

Nevertheless, the wavefunction slightly distorts in longer 

systems. 
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-Horn pipe 
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       a0.5 
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n=27

 E 1.5 

z ~ 1 
G 0.5 
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e 0 
'-, •-0 .5 

eta -1 
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0 

a ^0 

ca
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3.13.6 
 x[m]
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              -0.5 
      2.65.2 7.8 10.4 

                      x[ml 
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FIG. 13. With r (x) =1n x , graphs of wave function Vn_27 

      are illustrated in the cases : (a) L=1, (b) L=10. The 

       effect of the "potential" is really limited.

5 SUNNARY AND DISCUSSIONS

 This paper applies perturbation theory to Webster's equation 

(1), and derives second-order perturbation expression for horns 

of various shapes. Successful application of the theory to 

Webster's equation was confirmed in comparisons with the 

exact solutions. The wave number kr, and the sound pressure 

Pn = p',z / J were correctly enumerated. Moreover, this 
method was applicable to pipes that markedly deviated from 

the straight pipe (the simplest solvable shape). Moreover, this 

method was viable for variously shaped brass instruments. 

 The calculation can be performed at much higher precision, 

and with remarkably less numerical computation, than FEM. 

On a paralleled workstation of several CPUs constructed in our 

laboratory, the FEM required 20-30 minutes' runtime for each 

given set of L and n. On the other hand, our method enumerates 

the cross integrations (16) almost instantaneously. 

  The longer the instrument, the larger the effect of the 

perturbation, because the wavefunction in the horn becomes 

more distorted. However, the perturbation method is much

more resilient to shapes that deviate from straight pipes than 

initially expected. 

 We believe that the exponential horn is the preferred design 

for brass instruments, because of its nearly flat frequency 

characteristics 1. However, real musical instruments have more 

delicate structures, for reasons that are not fully understood. 

When played, the instruments must deliver high-quality sound 

that changes continuously. Therefore, their dynamical 

properties must be studied. In subsequent investigations, we 

will investigate the time dependent characteristics of the horn 

shapes in a theoretical framework. 

 The time-dependent acoustical wave equation differs from 

the quantum Schrodinger equation. The former involves a 

quadratic time differential, whereas the latter has a first-order 

time differential. This mathematical difference complicates the 

analysis, and likely requires a new mathematical approach.4),16)
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