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Abstract 

Incomplete Data Analysis for Economic Statistics 

By 

Masayoshi Takahashi 

 

Incomplete data are ubiquitous in social sciences; as a consequence, available data are 

inefficient and often biased. This dissertation deals with the problem of missing data in official 

economic statistics. Building on the practices of the United Nations Economic Commission for 

Europe (UNECE), the first half of the dissertation focuses on single imputation methods. After 

revealing that single ratio imputation is often used for economic data in the current practices of 

official statistics, this study unifies the three ratio imputation models under the framework of 

weighted least squares and proposes a novel estimation strategy for selecting a ratio imputation 

model based on the magnitude of heteroskedasticity. After showing that multiple imputation is 

suited for public-use microdata, the latter half of the dissertation focuses on multiple imputation 

methods. From a new perspective, this dissertation compares the three computational algorithms 

for multiple imputation: Data Augmentation (DA), Fully Conditional Specification (FCS), and 

Expectation-Maximization with Bootstrapping (EMB). It is found that EMB is a confidence 

proper multiple imputation algorithm without between-imputation iterations, meaning that EMB 

is more user-friendly than DA and FCS. Based on these findings, the current study proposes a 

novel application of the EMB algorithm to ratio imputation in order to create multiple ratio 

imputation, the new multiple imputation version of ratio imputation, providing brand-new 

software MrImputation implemented in R. Combining all of these findings, this dissertation will 

be an important addition to the literature of missing data analysis and official economic statistics. 

 

Keywords: Missing data; multiple imputation; ratio imputation; official statistics 

キーワード：欠測データ；欠損；多重代入法；比率代入法；補完；補定；公的統計 
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1 Introduction 

Social science data are often incomplete, which leads to inefficient and biased analyses. This 

dissertation is a study of the missing data problem in official economic statistics. Specifically, this 

dissertation deals with single and multiple imputation methods. This chapter explains why 

missing data are problematic. It also shows the structure of the dissertation. 

Many surveys in official statistics are based on samples because of the time and budgetary 

constraints. A sample is usually chosen as a subset of the population, via some type of random 

sampling techniques. In so doing, a random sample may be considered unit nonresponse, where 

some respondents do not answer in the survey, meaning that the rows for some respondents are 

all blank (de Waal et al., 2011, p.223). As long as sampling is random, the sampling error can be 

numerically assessed. Therefore, King et al. (2001, p.49) argue that unit nonresponse in social 

sciences generally does not introduce much bias into analyses. In fact, as the sample size increases, 

the law of large numbers predicts, the sampling error tends to become small (Weiss, 2005, p.329; 

Ross, 2006, p.443). This may lead us to believe that, if we increase the number of observations, 

there will be no error in data. 

A census is said to be a method to acquire information on the entire population of interest 

(Weiss, 2005, p.11). Once in a while, official statistical agencies have the luxury of conducting 

censuses in order to establish the population framework. One such example is the Economic 

Census for Business Activity, which aims at covering all of the enterprises and establishments in 

Japan. Since the census aims at obtaining information on the entire population of interest, there 

are no sampling errors in the census. 

However, non-sampling errors and missing data occur in the measurement process of official 

statistics (de Waal et al., 2011, p.2). Measurement is said to be the process where numbers are 

assigned to objects in meaningful ways, where measurement errors occur when the attributes of 

empirical objects are assigned to numerical values due to the imperfect functional translation 

(Jacoby, 1991; Jacoby, 1999). If no numerical values are assigned to empirical objects, 



2 

 

missingness occurs due to measurement errors. In light of this, it is highly unlikely that the 

observations in the Economic Census will be complete. In fact, the second-term Master Plan 

Concerning the Development of Official Statistics (adopted by the Japanese Government in 2014) 

points out that it is generally difficult to obtain values for accounting items from enterprises and 

establishments. In other words, non-accounting items may be answered, but accounting items 

may not be answered by some enterprises and establishments. Although the census aims at 

obtaining information on the entire population of interest with no sampling error, it is likely that 

the census is incomplete data due to missingness. 

This situation represents item nonresponse, where partial responses are available from some 

respondents, meaning that missing values are scattered in a data matrix (de Waal et al., 2011, 

p.223). To be clear about the topic of interest, this dissertation is about item nonresponse. King et 

al. (2001, p.49) contend that item nonresponse is more serious than unit nonresponse. In fact, 

whether the survey is a census or a sample does not change the fact that there are almost always 

some respondents who do not answer some questions in the survey. In other words, incomplete 

data are ubiquitous in official economic statistics, whether it is a census or a sample. When some 

values are missing, available data are inefficient at best and often biased at worst, without 

explicitly taking missing values into account. Unfortunately, this bias does not disappear when 

the number of observations is increased. 

In light of this, the current study deals with the problem of missing data in official economic 

statistics, where most variables are continuous, rather than categorical. Specifically, this 

dissertation is a study of imputation methods, which are known to be able to rectify the missing 

data problem under certain assumptions. By way of organization, Chapters 2 to 6 are the body of 

the dissertation. Chapters 2 and 3 are mainly concerned with single imputation methods (part of 

Chapter 2 also with multiple imputation). Chapters 4, 5, and 6 deal with multiple imputation 

methods. Below is the synopsis of each chapter. 

Chapter 2 reveals the status quo of official statistics around the world. For this purpose, Chapter 
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2 builds on the practices of the United Nations Economic Commission for Europe (UNECE). 

Chapter 2 shows that, in the current practices of imputation among the national statistical institutes, 

ratio imputation is often used and indeed suitable for economic data. Also, Chapter 2 reveals that 

hot deck imputation is often used and indeed suitable for household data. Both of these methods 

are deterministic single imputation. Furthermore, Chapter 2 assesses deterministic single 

imputation, stochastic single imputation, and multiple imputation, demonstrating that multiple 

imputation is suited for public-use microdata. Therefore, this chapter indicates that the future 

practice of official economic statistics would need to be changed from single imputation to 

multiple imputation. 

As is made clear in Chapter 2, ratio imputation is often used to treat missing values in official 

economic statistics. However, there are three competing estimators in the literature: Ordinary least 

squares; ratio of means; and mean of ratios. A natural question arises. Under what circumstances, 

which method should we use? Chapter 3 answers this question by unifying ratio imputation 

models under the framework of weighted least squares. Furthermore, Chapter 3 proposes a novel 

estimation strategy for selecting a ratio imputation model based on the magnitude of 

heteroskedasticity. The results in the Monte Carlo simulation give a strong support for the 

proposed method. This chapter should be not only academically important, but also practically 

useful, in choosing the best imputation method for a given dataset in an economic survey. 

As Chapter 2 indicated, the future course for official statistics would be multiple imputation. 

Therefore, Chapter 4 shifts gears from single imputation to multiple imputation, and compares 

the three computational algorithms for multiple imputation: Data Augmentation (DA), Fully 

Conditional Specification (FCS), and Expectation-Maximization with Bootstrapping (EMB). In 

the literature, many comparative studies are available from the perspectives of joint modeling 

(DA, EMB) and conditional modeling (FCS), which shows that joint modeling is computationally 

more efficient and conditional modeling is more flexible. However, little is known about the 

relative superiority between the MCMC algorithms (DA, FCS) and the non-MCMC algorithm 
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(EMB), where MCMC stands for Markov chain Monte Carlo. Based on simulation experiments, 

Chapter 4 contends that, while DA and FCS are not confidence proper without between-

imputation iterations, EMB is confidence proper even without between-imputation iterations; thus, 

EMB is more user-friendly than DA and FCS. 

Chapters 2 and 3 demonstrate that ratio imputation is often employed to deal with missing 

values in the practices of official economic statistics. Chapter 4 demonstrates that EMB is a useful 

multiple imputation algorithm. Since the literature is devoid of multiple ratio imputation, Chapter 

5 proposes a novel application of the EMB algorithm to ratio imputation, so as to create the 

multiple imputation version of ratio imputation. Chapter 5 presents the mechanism of multiple 

ratio imputation and assesses the performance compared to traditional imputation methods using 

Monte Carlo simulation to establish the usefulness of multiple ratio imputation. Furthermore, 

Chapter 6 outlines a concrete code in the R statistical environment to execute multiple ratio 

imputation by the EMB algorithm and provides brand-new software, MrImputation implemented 

in R. Readers can use this software by simply copying and pasting these codes in R. Thus, this 

chapter should be practically useful. Finally, Chapter 7 summarizes the central findings in the 

dissertation and indicates the possible future courses of research. Combining all of these five 

chapters together, the author believes that this dissertation will be an important addition to the 

literature of missing data in particular and official statistics in general. 

All of the chapters in the body of this dissertation are based on the peer-reviewed articles 

written by the author. The permission to use these articles was explicitly obtained from the 

publishers (See Acknowledgements). Chapter 2 is based on Takahashi (2017a), a peer-reviewed 

article in Statistics, which is the official journal of the Japan Society of Economic Statistics, a 

corporative science and research body of the Science Council of Japan. Chapter 3 is based on 

Takahashi et al. (2017), a peer-reviewed article in the Statistical Journal of the IAOS, which is the 

flagship journal of the International Association for Official Statistics (IAOS) under the umbrella 

of the International Statistical Institute (ISI). Chapter 4 is based on Takahashi (2017d), a peer-



5 

 

reviewed article in the Data Science Journal, which is sponsored by CODATA (Committee on 

Data for Science and Technology), an interdisciplinary scientific committee of the International 

Council for Science (ICSU). Chapters 5 and 6 are based on Takahashi (2017b) and Takahashi 

(2017c), both of which are peer-reviewed articles in the Journal of Modern Applied Statistical 

Methods, which is operated by the Wayne State University Library System, classified as one of 

the top 115 libraries in the United States by the Association for Research Libraries (Kyrillidou et 

al., 2015). Note that the Statistical Journal of the IAOS, the Data Science Journal, and the Journal 

of Modern Applied Statistical Methods are indexed in Scopus by Elsevier as of April 2017. 
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2 Imputation Methods in Official Statistics: Current and Future Perspectives 

This chapter derived from Takahashi (2017a), a peer-reviewed article in Statistics (112), which 

is the official journal of the Japan Society of Economic Statistics, a corporative science and 

research body of the Science Council of Japan. The author would like to thank the Japan Society 

of Economic Statistics for permission to use “Missing data treatments in official statistics: 

Imputation methods for aggregate values and public-use microdata” (Statistics, no.112, 65-83). 

2.1 Introduction 

About half of the respondents generally do not answer at least one question in social surveys 

(King et al., 2001, p.49). Especially, the response rate tends to be low in sensitive items such as 

the income of individuals and the turnovers of enterprises (Schenker et al., 2006). Furthermore, 

respondents may unintentionally overlook or forget to answer a question. Also, if respondents 

change their addresses or an enterprise goes bankrupt, then values in longitudinal surveys will be 

inevitably missing (Allison, 2002; de Waal et al., 2011). 

Thus, it is quite difficult to collect all data points in a social survey, which implies that the 

statistical treatment of missing values is an indispensable process in the official statistical 

production. While missing values in official statistics are often dealt with by imputation (de Waal 

et al., 2011, Ch.7), the methodological importance of imputation has rarely been discussed in 

Japan. On the other hand, the origin of imputation methods in official statistics can be traced back 

to the 1950s (U.S. Bureau of the Census, 1957, p.XXIV), which amounts to a huge body of the 

literature. For example, in the context of the statistical production process of microdata in official 

statistics, imputation methods have been the topic of debate at international conferences, such as 

the Work Session on Statistical Data Editing by the United Nations Economic Commission for 

Europe (UNECE). 

In light of the findings reported at UNECE, this chapter reviews the methodological 

development for missing value treatments in official statistics. The first half of the chapter surveys 

the methods used by the UNECE member states, examining the characteristics of the imputation 
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methods for specific types of surveys such as economic surveys and household surveys in the 

traditional aggregation-based imputation methods. 

Furthermore, while analyses were often based on macro-level data in the 20th century, it is 

recognized that more and more empirical analyses are based on micro-level data in the 21st century 

(Sakata, 2006, p.31). Under such a circumstance, there is an increasing demand that the survey 

data collected by official statistics should be made openly available as public-use microdata. On 

the supply side as well, the second-term Master Plan Concerning the Development of Official 

Statistics was adopted by the Japanese Government in 2014, which mentions the utilization of 

official statistics, where microdata will be experimentally made available at some on-site facilities 

(Nakamura and Hirasawa, 2016, pp.36-37). This shows that Japan has just taken a step forward 

in the path of public-use microdata. Thus, the latter half of the chapter discusses the future 

challenges about how the imputation methods for public-use microdata are different from the ones 

used in the traditional official statistics production process. 

Note that the term “public-use microdata” in this dissertation does not imply a specific way of 

providing a microdata service. Unlike the traditional analysis of relying on the aggregated values 

tabulated by official statistical agencies, this dissertation assumes the environment where the 

analysts can analyze data at their discretion. In other words, the term “public-use microdata” in 

this dissertation refers to a larger conception that includes “public-use microdata sample,” 

“anonymized microdata,” and “original data (at the individual level).” Generally, the term “public” 

in this context is used for open data supplied to the general public, not for microdata supplied to 

the scholars who meet the terms and conditions of using microdata. However, the important point 

of the discussion in this chapter is that the imputers (survey organization) and the analysts (the 

general public and the scholars) are different entities. This chapter does not differentiate the 

general public and the scholars. Therefore, the term “public-use microdata” in this chapter 

includes the cases where the scholars are the analysts using the microdata provided by the national 

statistical agencies. 
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Also, note that the discussion in this chapter is limited to the topic of missing values in public-

use microdata, assuming that enough level of disclosure limitation is already taken care of. For a 

detailed discussion on confidentiality and usability of anonymized data, see Ito and Hoshino 

(2014). 

2.2 Problems of Missing Data 

Tables 2.1, 2.2, and 2.3 are simulated data of income and age for four people. All data are 

continuous in Table 2.1. Age is categorical in Table 2.2. Income is categorical in Table 2.3. Black 

numbers are observed values, and white numbers in gray cells are the true values of the missing 

values. Let us assume that the estimands in Tables 2.1 and 2.2 are the mean of income, and the 

estimand in Table 2.3 is the mode of income. 

Table 2.1 

Quantitative 

Data 

 Table 2.2 

Quantitative/Qualitative 

Data 

 Table 2.3 

Qualitative/Quantitative 

Data 

ID Income Age  ID Income Age  ID Income Age 

1 239 26  1 239 1  1 1 26 

2 421 38  2 421 1  2 2 38 

3 505 47  3 505 2  3 3 47 

4 650 54  4 650 2  4 3 54 

           Note: The unit of income is 10,000 yen, and the unit of age is a year. In Table 2.2, 1 = less than 40 years old, 2 

= 40 years or above. In Table 2.3, 1 = 0 and 2.49 million, 2 = 2.5 million and 4.99 million, 3 = 5 million or 

above. Tables 2.2 and 2.3 will be used in the next sections. 

 

In Table 2.1, if all the data are observed, then the mean income of the four people can be easily 

calculated as 453.75 in equation (2.1).  

Income̅̅ ̅̅ ̅̅ ̅̅ ̅̅
true =

1

4
∑Income𝑖

4

𝑖=1

=
239 + 421 + 505 + 650

4
= 453.75 (2.1) 

 

On the other hand, as we can see in equation (2.2), even one missing value makes the 

calculation of the mean impossible. The fact that the mean cannot be calculated implies that the 

standard statistical analyses such as the computation of the standard deviation, correlation, 

regression coefficient, and standard error are also impossible. In other words, the primary problem 

of missing values is the impossibility of statistical analysis without treating missing values. 
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Income̅̅ ̅̅ ̅̅ ̅̅ ̅̅
missing =

1

4
∑Income𝑖

4

𝑖=1

=
239 + 421 + 505 + Income4

4

=
1155 + Income4

4
=? 

(2.2) 

 

When a cell is missing in a row, then the row is deleted in the default setting of statistical 

software such as SAS, SPSS, and STATA. In this way, the data will be seemingly “complete,” 

making statistical analysis possible. This method is called listwise deletion, also known as 

complete case analysis and casewise deletion (Baraldi and Enders, 2010, p.10). In Table 2.1, we 

treat ID4 as if it were not there; thus, the mean of income is 388.33 as in equation (2.3). However, 

this example shows that the true mean value is 453.75, which is underestimated due to bias in 

missing data. Furthermore, the valuable information about Age4 = 54 is not utilized, but thrown 

away. The secondary problem of missing data is that the analyses based on missing data may be 

biased and inefficient, where bias means the difference between the expected value of the 

estimator and the true parameter value and efficiency means the size of variance for the estimator 

that becomes large as the sample size 𝑛 becomes small. 

Income̅̅ ̅̅ ̅̅ ̅̅ ̅̅
listwise =

1

3
∑Incomei

3

i=1

=
239 + 421 + 505

3
= 388.33 (2.3) 

 

2.3 Assumptions of Missing Data Mechanisms 

Little and Rubin (2002) proposed the three classifications of missing data mechanisms: Missing 

Completely At Random (MCAR), Missing At Random (MAR), and Not Missing At Random 

(NMAR). NMAR is sometimes referred to as MNAR (Missing Not At Random), but these two 

are exactly the same concepts. For a more detailed discussion on the missing data mechanisms, 

also see Sections 3.2, 4.4, and 5.3. 

Under MCAR, missing data can be considered a subsample of the population, leading to no 

bias, but reducing the efficiency. Under MAR, missing data may be biased. As Allison (2002, p.5) 

points out, we can ignore the parameters of the missing data mechanism under MCAR and MAR; 
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thus, MCAR and MAR are ignorable. As a result, imputation can rectify the bias in missing data. 

On the other hand, under NMAR, the missing data mechanism is non-ignorable. The selection 

model and pattern-mixture model can be used to tackle the issue of non-ignorable missing data 

mechanisms, but these models require strong assumptions (Allison, 2002, ch.7; Enders, 2010, 

ch.10). As we will see later in this chapter, these methods are useful in sensitivity analysis, which 

evaluates how the results based on the MAR assumption would change under the assumption that 

NMAR is correct (Abe, 2016, p.160). If the results are not drastically different, then the 

confidence will be enhanced about the results based on the MAR assumption, while if the results 

are drastically different, then the confidence is low, so that we would need to handle the situation 

by including more auxiliary variables to make the assumption of MAR more relevant. 

The true missing data mechanism is often unknown, but there is an occasion where the missing 

data mechanism is obvious through the planned missing design (Enders, 2010). For example, 

generally in official economic statistics, the actual turnover values among large enterprises are 

collected by follow-ups even if they are missing at first; then, only the missing values among 

small-and-medium enterprises are imputed by statistical methods (de Waal et al., 2011, pp.245-

246). In this case, the missing rate of turnover changes according to the size of enterprises such 

as the number of employees; thus, this can be thought of as MAR. Scheuren (2005) estimates that 

the proportion of MCAR is about 10% to 20%, MAR about 50%, and NMAR about 10% to 20% 

in official statistics. 

2.4 Current Imputation Methods in Official Statistics: Deterministic Single Imputation 

Traditionally, the main goal in official statistics is to compute the total (or the mean) of survey 

data, not the analysis of the distribution and variance (de Waal et al., 2011, p.225). Deterministic 

single imputation uses the predicted values based on the imputation model without adding random 

error. It is customary to use deterministic single imputation in official statistics, because it is an 

unbiased point estimator of the mean. Among the deterministic single imputation methods, it is 

said that the frequently used methods are regression imputation, ratio imputation, mean 
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imputation, and hot deck imputation (Hu et al., 2001; de Waal et al., 2011, ch.7). This section 

briefly introduces the mechanisms of these four methods. 

2.4.1 Regression Imputation 

In regression imputation, parameters 𝛽0 and 𝛽1 in equation (2.4) are estimated by Ordinary 

Least Squares (OLS) based on observed data (Takahashi et al., 2015, pp.11-14). Observed data 

refer to the data based on listwise deletion. Using the data in Table 2.1, we can estimate 𝛽0 =

−85.33 and 𝛽1 = 12.80. Since the age of ID 4 is 54, the estimated income of ID 4 is 605.87 as 

in equation (2.5). If we use this value instead of Income4 in equation (2.2), then the mean 

income is computed as 442.72. This implies that the mean value is now closer to the truth than 

the one based on listwise deletion. For a detailed discussion on regression imputation, also see 

Chapter 3 of this dissertation. 

Incomê
i = 𝛽0 + 𝛽1Agei (2.4) 

Income4 = −85.33 + 12.80 × 54 = 605.87 (2.5) 

2.4.2 Ratio Imputation 

In ratio imputation, parameter 𝛽1 in equation (2.6) is estimated by the ratio of means based on 

observed data (Takahashi et al., 2015, pp.18-22). Using the data in Table 2.1, the mean of income 

in observed data is 388.33, and the mean of age in observed data is 37. These are the values based 

on listwise deletion. Therefore, we can estimate 𝛽1 = 388.33 37⁄ = 10.50. Since the age of ID 

4 is 54, the estimated income of ID 4 is 567.00 as in equation (2.7). If we use this value instead 

of Income4 in equation (2.2), then the mean income is computed as 433.00. This implies that 

the mean value is now closer to the truth than the one based on listwise deletion. For a detailed 

discussion on ratio imputation, also see Chapter 3 of this dissertation. 

Incomê
i = 𝛽1Agei (2.6) 

Income4 = 10.50 × 54 = 567.00 (2.7) 
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2.4.3 Mean Imputation 

In mean imputation, the mean of observed data is used as imputed values for missing values. 

Generally, mean imputation is not useful except rare circumstances (Takahashi and Ito, 2013a, 

pp.27-28; Takai et al., 2016, p.6). However, in Table 2.2, the value of age is not numerical but 

categorical. In this situation, we may use group mean imputation, which computes the mean in 

each age group (de Waal et al., 2011, pp.246-249). If we stratify the data in Table 2.2 by age, then 

we can classify ID 1 and ID 2 to group 1, and ID 3 and ID 4 to group 2. In order to estimate the 

income value of ID 4, we may use the mean of group 2, which is 505. If we use this value instead 

of Income4 in equation (2.2), then the mean income is computed as 417.50. This implies that, 

unlike simple mean imputation, the mean value using group mean imputation is now closer to the 

truth than the one based on listwise deletion. 

2.4.4 Hot Deck Imputation 

Just as in Table 2.3, let us suppose that age is numeric, but income is categorical. If the estimand 

is categorical, we may use hot deck imputation, where we find a donor whose value in an auxiliary 

variable is close to that of the recipient, and the donor’s value is used as an imputation. The age 

of ID 4 is 54 which is close to the age 47 of ID 3 in Table 2.3. Therefore, ID 3 is the donor for ID 

4. We use the income of ID 3 for the value of ID 4; thus, it will be 3. In this case, the mode of 

income is 3, and we can see that this value matches the true value in complete data. In the actual 

application, the nearest neighbor method is often used to find a suitable donor by defining the 

distance function, which is essentially the same as matching. For a detailed discussion on hot deck 

and matching, see Abe (2016, pp.57-59), Takai et al. (2016, pp.110-113), and Kurihara (2015). R 

Package HotDeckImputation can be used for this purpose (Joenssen, 2015). Hot deck is a non-

parametric method that can be used even when all data are categorical. 
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2.5 Current Practice of Data Editing Across the UNECE Member States 

The Work Session on Statistical Data Editing is an international conference hosted every 18 

months by UNECE, where national statistical agencies from Europe, North America, and Oceania 

meet together to exchange their ideas and information concerning the methods of handling 

missing values and error. The author attended the Norway conference (September, 2012), the 

France conference (April, 2014), and the Hungary conference (September, 2015). Questionnaires 

were sent to those participants who presented research papers at least in one of the above 

mentioned three conferences. All of them are the national statistical agencies that internationally 

lead official statistics. The results of the survey are summarized in Table 2.4. 

Population: Twenty three national statistical agencies 

Survey Period: July to September, 2016 

Survey Method: A questionnaire sent via email to a staff who specializes in data editing 

Response Rate: 87.0% (as of September 6, 2016) 

Table 2.4 Results of UNECE Survey (Multiple Answers) 

 Regression 

Imputation 

Ratio 

Imputation 

Mean 

Imputation 

Hot Deck 

Imputation 

Question 1 95.0% 95.0% 95.0% 100.0% 

Question 2 40.0% 60.0% 35.0% 65.0% 

Question 3 30.0% 80.0% 35.0% 30.0% 

Question 4 10.0% 10.0% 25.0% 80.0% 
Question 1: Does your organization use all of the four methods in practice? 

Question 2: Generally speaking, which of the four methods is most often used in practice? 

Question 3: In economic data, where the unit is enterprises and establishments, which of the four methods is most 

often used in practice? 

Question 4: In household data, which of the four methods is most often used in practice? 

 

Question 1 reveals that all of the four methods are used in practice among almost all of the 

twenty national statistical agencies, where mean imputation is used more frequently than expected. 

Question 2 shows that ratio imputation (60.0%) and hot deck imputation (65.0%) are deemed 

important. Question 3 reveals that ratio imputation (80.0%) is often used in economic data, and 

that regression imputation is not used very often. Incidentally, regression imputation covers a 

wider variety of models than ratio imputation, such as multiple regression, polynomials, logistic 

regression; thus, regression imputation is sometimes employed in those situations (de Waal et al., 
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2011, pp.233-235). Question 4 shows that hot deck imputation (80.0%) is often used in household 

data, and that the numerical items in household data are occasionally dealt with by group mean 

imputation (25.0%). 

Question 5 in Table 2.5 reveals the fact that, in the current practice of data editing, stochastic 

single imputation is used by fourteen national statistical agencies (70.0%), multiple imputation 

by eight national statistical agencies (40.0%), and fractional imputation by one national statistical 

agency (5.0%). Note that stochastic single imputation is a method that adds random components 

to each imputed value, so that the dispersion of data is adjusted (Takahashi et al., 2015, pp.15-18).  

Table 2.5 Results of UNECE Survey (Multiple Answers) 

 Stochastic Single 

Imputation 

Multiple 

Imputation 

Fractional 

Imputation 

Question 5 70.0% 40.0% 5.0% 
Question 5: Does your organization use any of the following methods in practice? If yes, which method(s)? 

 

This chapter does not deal with fractional imputation, but briefly, fractional imputation is a 

repeated imputation method just as multiple imputation. It is different from multiple imputation 

in the following three points (de Waal et al., 2011, p.272): (1) Fractional imputation can be 

considered improper multiple imputation based on the frequentist perspective; (2) the purpose of 

fractional imputation is to minimize the inflation of the variance in multiple imputation; and (3) 

fractional imputation relies on a version of hot deck; thus, it can handle qualitative data. Interested 

readers are referred to de Waal et al. (2011, pp.271-272). 

2.6 Simulation Studies on Deterministic Single Imputation Methods 

As we saw in Section 2.5, all of the four methods of mean imputation, ratio imputation, regression 

imputation, and hot-deck imputation are utilized by the national statistical agencies around the 

world. This section conducts a series of Monte Carlo simulation experiments for these four 

methods, assuming the following data-generation processes. 

(1) Economic Data: Numerical (quantitative) data following the log-normal distribution 

(2) Qualitative Economic Data: Numerical (quantitative) data following the log-normal 

distribution and categorical (qualitative) auxiliary variable 
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(3) Household Data: Categorical (qualitative) data and numerical (quantitative) auxiliary 

variable 

Monte Carlo simulation is an analytic method that repeatedly draws random numbers. We 

assume a certain probability distribution based on observed data, and generate pseudo random 

numbers by a computer in order to quantitatively analyze random variables that follow probability 

distributions (Ono and Ikawa, 2015). In other words, Monte Carlo simulation is a method to use 

a computer as an experimental laboratory, where the researcher has the control over the 

experiments and can measure the effects by observing the results based on different laboratory 

environments (Carsey and Harden, 2014). To be specific, Monte Carlo simulation is conducted 

by the following five steps (Mooney, 1997). All of the computations in Chapter 2 were done in R 

3.2.4. 

(1) Define the pseudo population on the computer. 

(2) Draw a sample from the pseudo population. 

(3) Estimate the parameter. 

(4) Repeat steps (2) and (3), many times, say 1000 times. 

(5) Calculate the relative frequency of the parameter estimates. 

The results of the experiments are evaluated through the Mean Squared Error (MSE) in 

equation (2.8). The MSE of an estimate 𝜃 can be computed by generating a vector of true values 

𝜃, taking the differences from a vector of 𝜃, and dividing the sum of the squared differences by 

the number of simulation runs (Mooney, 1997; Carsey and Harden, 2014). A smaller MSE value 

means that the method is comparatively good. 

𝑀𝑆𝐸 = 𝐸 [(𝜃 − 𝜃)
2
] (2.8) 

 

In the actual applications below, following Di Zio and Guarnera (2013, p.549), the Relative 

Root Mean Squared Error (RRMSE) is used as in equation (2.9), which normalizes the MSE by 

the true value and takes the square root. 
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𝑅𝑅𝑀𝑆𝐸 = √
1

𝑇
∑(

𝜃 − 𝜃

𝜃
)

2𝑇

𝑡=1

 (2.9) 

 

The design of the simulation is as follows. The population model is equation (2.10), where the 

estimand is 𝑦̅. 

𝑦𝑖 = 𝛽1𝑥1𝑖 + 𝜀𝑖 (2.10) 

where 

𝑥1𝑖~𝐿𝑁(𝑙𝑜𝑔𝑚𝑒𝑎𝑛 = 0, 𝑙𝑜𝑔𝑠𝑑 = 1) 

𝜀𝑖~𝑁(𝑚𝑒𝑎𝑛 = 0, 𝑠𝑑 = 𝜎√𝑥𝑖 ) 

 

 

The number of iterations in Monte Carlo simulation is set to 1000, in each of which sample 

data with 𝑛 = 1000 are generated. The missingness in 𝑦𝑖 mimics the planned missing design 

(Enders, 2010) mentioned in Section 2.3. Specifically, let 𝑢𝑖~𝑈(0,1). Also, let med(𝑥1𝑖) be the 

median of 𝑥1𝑖. When 𝑥1𝑖 < med(𝑥1𝑖) and 𝑢𝑖 < 0.6, the value of 𝑦𝑖 is made missing, which 

creates the MAR missingness given the values of 𝑥1𝑖. The missing rate is set to about 30%. This 

setting is realistic, because the mean missing rates of income and wage in the National Health 

Interview Survey from 1997 to 2004 are about 30%, respectively (Schenker et al., 2006, p.925). 

Also, the variance of the error term 𝜀𝑖 increases in proportion to the values of 𝑥1𝑖, which means 

that the variance is heteroskedastic. The values of 𝛽1 are randomly drawn from 𝑈(1.1,2.0), and 

the values of 𝜎 are randomly drawn from 𝑈(1.0,2.0). In other runs, not reported here, where 

these values were changed, similar results are obtained. 𝐿𝑁(∙) is R-function rlnorm, 𝑁(∙) is 

R-function rnorm, and 𝑈(∙) is R-function runif, respectively. 

Table 2.6 simulates the treatment of missing values in economic data, an example of which is 

Table 2.1. In log-normally distributed data where the variance is heteroskedastic, all of the 

imputation methods have smaller RRMSE compared to listwise deletion. The performance of 

ratio imputation (RRMSE = 0.048) is best in relation to regression imputation (RRMSE = 0.050) 
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and hot deck imputation (RRMSE = 0.050). As is discussed in Cochran (1977, p.158) and 

Takahashi et al. (2017), ratio imputation is the best linear unbiased estimator (BLUE) under the 

heteroskedastic error, 𝜀𝑖~𝑁(0, 𝜎√𝑥𝑖  ). 

Table 2.6 RRMSE for Missing Value Treatments in Economic Data 

Complete 

Data 

Listwise 

Deletion 

Regression 

Imputation 

Ratio 

Imputation 

Hot 

Deck 

0.047 0.302 0.050 0.048 0.050 

 

Table 2.7 simulates the treatment of missing values in economic data that include qualitative 

items, an example of which is Table 2.2. Two groups are defined by the different values of 𝑥1𝑖, 0 

and 1, where the mean and the missing rate are set to different values in each group. Other settings 

are exactly the same as in Table 2.6. Group mean imputation (RRMSE = 0.055) outperforms 

listwise deletion (RRMSE = 0.081) when the auxiliary variable is qualitative. 

Table 2.7 RRMSE for Missing Value 

Treatments in Qualitative Economic Data 

Complete 

Data 

Listwise 

Deletion 

Mean 

Imputation 

0.043 0.081 0.055 

 

Table 2.8 simulates the treatment of missing values in household data that include qualitative 

items, an example of which is Table 2.3. The values of 𝑦𝑖 are transformed into three unordered 

categories, while 𝑥1𝑖 is kept numerical. The estimand is the proportion of the values that are 

categorized into the mode of 𝑦𝑖. Other settings are exactly the same as in Table 2.6. When the 

target variable for computation is qualitative, the performance of hot deck (RRMSE = 0.056) is 

best, and regression imputation (RRMSE = 0.381) and ratio imputation (RRMSE = 0.381) are 

useless in these situations. 

Table 2.8 RRMSE for Missing Value Treatments in Household Data 

Complete 

Data 

Listwise 

Deletion 

Regression 

Imputation 

Ratio 

Imputation 

Hot 

Deck 

0.038 0.123 0.381 0.381 0.056 

 

2.7 Public-Use Microdata and Multiple Imputation 

Up to this point, our discussion assumes that the total (or the mean) is the target for computation. 

As we saw in Section 2.5, regression imputation, ratio imputation, group mean imputation, and 
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hot deck imputation are used by the national statistical agencies around the world. As we 

examined in Section 2.6, these methods are used for appropriate data types. The advantage of 

deterministic single imputation is that it is unbiased for point estimation of the mean (or the total), 

but the disadvantage is that the distribution and variance are not correctly estimated (Abe, 2016, 

p.55). The estimand in the analysis using public-use microdata is not limited to the mean and the 

total. 

If we want to make the analysis valid not only for the mean, but also for the variance and the 

standard error, we need to use multiple imputation (Schafer and Graham, 2002; Donders et al., 

2006; Baraldi and Enders, 2010; Cheema, 2014). Multiple imputation, in theory, randomly draws 

several values from the distribution of missing data. However, missing data are unobserved; thus, 

the distribution of missing data is also unobserved. In real applications, we estimate the predictive 

posterior distribution of missing values given observed data by using Bayesian statistics, and we 

randomly draw the mean vector and the variance-covariance matrix from the posterior distribution. 

In this way, we can implement imputation that can take into account the fact that the parameter 

of the imputation model is estimated (King et al., 2001). For a detailed discussion on multiple 

imputation, see Chapter 4 of this dissertation. Also see Iwasaki (2002, Ch.10), Takahashi and Ito 

(2014), Takahashi et al. (2015), and Abe (2016, Ch.5). 

Table 2.9 presents a concrete example of multiply-imputed data. The empty cell in income is a 

missing value, and the white numbers in gray cells for income1, income2, and income3 are the 

imputed values by multiple imputation. The mean of income1 is estimated as 388.25, the mean 

of income2 as 439.75, and the mean of income3 as 475.25. The point estimate of the mean income 

is the mean of the three means, i.e., 428.42. Single imputation in Section 2.4 deterministically 

estimated one value for a missing value, seeing no estimation uncertainty. However, in Table 2.9, 

the imputed values change every time we impute the missing value, showing estimation 

uncertainty, which makes the standard error valid. 
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Table 2.9 Example of Multiply-Imputed Data (𝑀 = 3) 

ID Income Age Income1 Income2 Income3 

1 239 26 239 239 239 

2 421 38 421 421 421 

3 505 47 505 505 505 

4  54 388 594 664 

 

Rubin (1987) proposes that if 𝑀 versions of multiply-imputed data (𝑀 > 1) are released by 

data providers, then the analysts can conduct a variety of statistical analyses regardless of their 

statistical literacy concerning missing data analysis. Therefore, it is suggested that multiple 

imputation is suitable for public-use microdata. By copying and pasting the code presented in 

Appendix 2.1, the analysts can perform statistical analyses without being annoyed by a practical 

difficulty of how to combine the analyses based on multiply-imputed data once they download 

public-use microdata (assuming that the public-use microdata are available online). 

Table 2.10 presents concrete examples of public-use microdata provided by the U.S. 

government using multiple imputation. 

Table 2.10 Example of Public-Use Microdata by Multiple Imputation (U.S. Government) 

Organization Survey Target Variable 

Number of 

Multiple 

Imputation 

Publication 

Date 

Centers for 

Disease Control 

and Prevention1 

2015 National 

Health Interview 

Survey 

Income, earnings 𝑀 = 5 June 30, 2016 

     
Federal Reserve 

System2 

2013 Survey of 

Consumer 

Finances 

Almost all 

missing 

variables 
𝑀 = 5 

September 25, 

2014 

     
Department of 

Transportation3 

2014 Fatality 

Analysis 

Reporting System 

Blood alcohol 

concentration 
𝑀 = 10 

December 1, 

2015 

     
Bureau of Labor 

Statistics4 

2014 Consumer 

Expenditure 

Survey 

Income 𝑀 = 5 
September 3, 

2015 

1 http://www.cdc.gov/nchs/nhis/nhis_2015_data_release.htm 

2 http://www.federalreserve.gov/econresdata/scf/scfindex.htm 

3 http://www.nber.org/data/fars.html 
4 http://www.bls.gov/cex/csxmicrodoc.htm 

 

An additional survey questionnaire was sent to those twenty national statistical agencies which 

answered Questions 1 to 5 in Section 2.5, and the responses were obtained from eighteen agencies 
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(response rate = 90.0% as of September 6, 2016). The results are presented in Table 2.11.  

Table 2.11 Results of UNECE Survey (Multiple Answers) 

 
Incomplete 

Data 

Deterministic 

Single 

Imputation 

Stochastic 

Single 

Imputation 

Multiple 

Imputation 

None of the 

above 

Question 6 22.0% 50.0% 61.1% 44.4% 22.2% 
Question 6: Hypothetically speaking, if survey data are to be made open as “public-use microdata,” which of the 

following imputation methods do you think should be used? 

 

In an open field, it was stated that public-use microdata should be imputed data so that all 

citizens would be able to conduct statistical analysis without being concerned with missing data. 

This concurs with Rubin’s (1987) suggestion. However, consensus has not been achieved about 

what type of imputed data should be used, such as deterministic single imputation (50.0%), 

stochastic single imputation (61.1%), or multiple imputation (44.4%).  

2.8 Multiple Imputation and Microdata Analysis 

As we saw in Section 2.7, there is no consensus of choosing listwise deletion, deterministic 

single imputation, stochastic single imputation, and multiple imputation as a method to treat 

missing values in public-use microdata among the national statistical agencies around the world. 

This section evaluates the accuracy of the mean and the regression coefficient using these four 

methods by Monte Carlo simulation. The number of multiply-imputed data is set to 5. This section 

utilizes R Package AMELIA II, a general purpose multiple imputation software program (Honaker 

et al., 2011). For different multiple imputation algorithms, see Chapter 4 of this dissertation. 

2.8.1 Regression Analysis: Missing Independent Variable 

The design of simulation is as follows (for detailed information, also see section 2.6). The 

population model is equation (2.11). 𝑥̅1 and 𝛽1 are the estimands. The number of Monte Carlo 

simulation runs 𝑇 is set to 1000, in each of which sample data of 𝑛 = 1000 are generated. The 

missingness in 𝑥1𝑖 is generated by MAR, conditional on 𝑦𝑖, setting the missing rate at about 

30%. Specifically, just as in Section 2.6, if 𝑦𝑖 < med(𝑦𝑖), 𝑃𝑟(𝑥1𝑖 = 𝑚𝑖𝑠𝑠𝑖𝑛𝑔) = 0.6. In order 

to mimic the analysis based on log-normal, economic data, we assume that the data are log-

transformed, so that the data were generated based on the normal distribution. The values of 𝛽1 
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are randomly drawn from 𝑈(1.1,2.0), and the values of 𝜎 are randomly drawn from 𝑈(1.0,2.0). 

In other runs, not reported here, where these values were changed, similar results are obtained. 

𝑦𝑖 = 𝛽1𝑥1𝑖 + 𝜀𝑖 (2.11) 

where 

𝑥1𝑖~𝑁(𝑚𝑒𝑎𝑛 = 0, 𝑠𝑑 = 1) 

𝜀𝑖~𝑁(𝑚𝑒𝑎𝑛 = 0, 𝑠𝑑 = 𝜎) 

 

 

Table 2.12 shows the RMSE for 𝑥̅1, the RRMSE for 𝛽1, and the coverage rate of the nominal 

95% confidence interval when missingness occurs in an independent variable. 

Table 2.12 Estimation of 𝑥̅1 and 𝛽1 when Independent Variable is Missing 

 
Complete 

Data 

Listwise 

Deletion 

Deterministic 

Single 

Imputation 

Stochastic 

Single 

Imputation 

Multiple 

Imputation 

RMSE（𝑥̅1） 0.076 0.618 0.085 0.090 0.087 

RRMSE（𝛽1） 0.026 0.062 0.139 0.031 0.030 
95% CI Coverage 94.9 61.8 0.1 90.5 94.7 
Note: Since the true value of 𝑥̅1 is zero, I used RMSE instead of RRMSE. CI stands for confidence interval. The 

95% CI coverage means the proportion of the times the true 𝛽1 was included in the 95% confidence interval in 

1,000 Monte Carlo experiments. 

 

As for the RMSE of 𝑥̅1, both single imputation and multiple imputation are unbiased, but 

listwise deletion is biased. The performances of deterministic single imputation (RMSE = 0.085), 

multiple imputation (RMSE = 0.087), and stochastic single imputation (RMSE = 0.090) are 

almost equal, but the performance of listwise deletion (RMSE = 0.618) is quite low. 

As for the RRMSE of 𝛽1, the performance of multiple imputation (RRMSE = 0.030) is best, 

followed by stochastic single imputation (RRMSE = 0.031) and listwise deletion (RRMSE = 

0.062). The performance of deterministic single imputation (RRMSE = 0.139) is quite low 

(Allison, 2002, p.53; Carpenter and Kenward, 2013, p.28). 

As for the nominal 95% confidence interval for 𝛽1, the CI by multiple imputation contains the 

true parameter with the probability of 94.7%, which is quite accurate. The CI by stochastic single 

imputation contains the true parameter with the probability of 90.5%, meaning that the nominal 

5% Type I error is about double, which is a serious concern (Enders, 2010, pp.53-54). The CI by 
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listwise deletion contains the true parameter with the probability of 61.8%, meaning that the 

nominal 5% Type I error is about eight-fold, which is a very serious concern. The CI by 

deterministic single imputation contains the true parameter with the probability of 0.1%, meaning 

that the nominal 5% Type I error is about twenty-fold, which is an extremely serious concern. 

When the independent variable has missing values and the estimands are the regression coefficient 

and the mean, then this analysis shows that multiple imputation should be used. Also see Chapter 

4 of this dissertation about more detailed analyses, including other versions of multiple imputation. 

2.8.2 Regression Analysis: Missing Dependent Variable 

The design of simulation is as follows. The population model is equation (2.11). 𝑦̅ and 𝛽1 

are the estimands. The missingness in 𝑦𝑖 is generated by MAR conditional on 𝑥1𝑖, setting the 

missing rate at about 30%. Other settings follow Section 2.8.1. Table 2.13 shows the RMSE for 

𝑦̅, the RRMSE for 𝛽1 , and the coverage rate of the nominal 95% confidence interval when 

missingness occurs in the dependent variable. 

Table 2.13 Estimation of 𝑦̅ and 𝛽1 when Dependent Variable is Missing 

 
Complete 

Data 

Listwise 

Deletion 

Deterministic 

Single 

Imputation 

Stochastic 

Single 

Imputation 

Multiple 

Imputation 

RMSE（𝑦̅） 0.067 0.609 0.073 0.075 0.074 

RRMSE（𝛽1） 0.021 0.027 0.027 0.029 0.028 

95% CI Coverage 94.8 95.0 80.0 83.9 94.2 
Note: Since the true value of 𝑦̅ is zero, I used RMSE instead of RRMSE. CI stands for confidence interval. The 

95% CI coverage means the proportion of the times the true 𝛽1 was included in the 95% confidence interval in 

1,000 Monte Carlo experiments. 

 

As for the RMSE of 𝑦̅, both single imputation and multiple imputation are unbiased, but 

listwise deletion is biased. The performances of deterministic single imputation (RMSE = 0.073), 

multiple imputation (RMSE = 0.074), and stochastic single imputation (RMSE = 0.075) are 

almost equal, but the performance of listwise deletion (RMSE = 0.609) is quite low. 

As for the RRMSE of 𝛽1 , the performances of listwise deletion (RRMSE = 0.027), 

deterministic single imputation (RRMSE = 0.027), multiple imputation (RRMSE = 0.028), and 

stochastic single imputation (RRMSE = 0.029) are almost the same. When the dependent variable 
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has missing values and the estimand is the regression coefficient, then imputation does not change 

the result from listwise deletion. This is because the incomplete cases do not contribute to the 

computation of regression coefficients under MAR when missingness occurs in the dependent 

variable (Little, 1992; Carpenter and Kenward, 2013, pp.24-28; Raghunathan, 2016, p.99). 

As for the nominal 95% confidence interval for 𝛽1, the CI by listwise deletion contains the true 

parameter with the probability of 95.0%, which is quite accurate. The CI by multiple imputation 

contains the true parameter with the probability of 94.2%, which is also quite accurate. The CI by 

stochastic single imputation contains the true parameter with the probability of 83.9%, meaning 

that the nominal 5% Type I error is more than triple, which is a serious concern. The CI by 

deterministic single imputation contains the true parameter with the probability of 80.0%, 

meaning that the nominal 5% Type I error is about quardruple, which is an extremely serious 

concern. 

If the estimands are the regression coefficient and the mean, then multiple imputation, though 

it comes in second in each situation, may be the best method overall. This analysis shows that 

single imputation should not be used at all in this situation. 

2.9 Multiple Imputation, Microdata Analysis, and Congeniality 

When the imputation model and the analysis model have exactly the same variables estimating 

the same number of parameters, the two models are said to be congenial (Enders, 2010, p.227; 

Abe, 2016, p.118; Takai et al., 2016, p.123). The models we used so far are all congenial. However, 

in real applications, there can be occasions under which the imputation model is different from 

the analysis model. If this is the case, there is no guarantee in theory about the consistency of the 

parameter estimates by multiple imputation. In this section, we will examine the two uncongenial 

cases: (1) The analysis model is the subset of the imputation model; and (2) the imputation model 

is the subset of the analysis model. 

2.9.1 Analysis Model Subset of Imputation Model 

The design of simulation is as follows. The imputation model is equation (2.12), and the 
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analysis model is equation (2.13). The esimands are 𝑥̅1 and 𝛽1. To be technically correct, since 

missingness occurs in 𝑥1𝑖, the imputation model in a strict sense is 𝑥1𝑖 = 𝛾0 + 𝛾1𝑦𝑖 + 𝛾2𝑥2𝑖 +

𝜖𝑖 , and 𝑦𝑖 = 𝛽1𝑥1𝑖 + 𝛽2𝑥2𝑖 + 𝜀𝑖  is the population model of 𝑦𝑖 . Equation (2.12) is equation 

(2.11) that contains the bivariate distribution of 𝑋. The number of Monte Carlo simulation runs 

𝑇 is set to 1000, in each of which sample data of 𝑛 = 1000 are generated. The missingness in 

𝑥1𝑖 is generated by MAR conditional on 𝑦𝑖, setting the missing rate at about 30%. 𝑀𝑁(∙) refers 

to R-function mvrnorm. The values of 𝛽1 are randomly drawn from 𝑈(1.1,1.5), and the values 

of 𝜎 are randomly drawn from 𝑈(1.1,1.5). In other runs, not reported here, where these values 

were changed, similar results are obtained. 

𝑦𝑖 = 𝛽1𝑥1𝑖 + 𝛽2𝑥2𝑖 + 𝜀𝑖 (2.12) 

𝑦𝑖 = 𝛽1𝑥1𝑖 + 𝜀𝑖 (2.13) 

where 

𝑋~𝑀𝑁(𝑚𝑒𝑎𝑛 = 0, 𝑠𝑑 = 1) 

𝑋 = (𝑥1𝑖, 𝑥2𝑖) 

𝑐𝑜𝑟(𝑋) = (
1.0 0.6
0.6 1.0

) 

𝜀𝑖~𝑁(0, 𝜎) 

 

 

When the analysis model is the subset of the imputation model, the two models are strictly 

speaking uncongenial. However, as is clear in Table 2.14, there is no problem in the performance 

of multiple imputation (Enders, 2010, pp.228-229; Carpenter and Kenward, 2013, pp.64-65). 

What this implies is that the official statistical agencies as data providers can include as many 

auxiliary variables in the imputation model as possible, and they can make the data available after 

removing the variables that contain sensitive information (Takai et al., 2016, p.124). In the current 

practice of imputation among the national statistical agencies, the variables used for imputation 

are only a subset of the variables that are included in microdata; however, due to the problem of 

congeniality, missing values must be imputed by using all of the available variables that are 
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contained in microdata. See Section 2.9.2 below. 

Table 2.14 The Analysis Model is the Subset of the Imputation Model 

 
Complete 

Data 

Listwise 

Deletion 

Deterministic 

Single 

Imputation 

Stochastic 

Single 

Imputation 

Multiple 

Imputation 

RMSE（𝑥̅1） 0.074 0.633 0.080 0.083 0.081 

RRMSE（𝛽1） 0.026 0.058 0.084 0.029 0.028 
95% CI Coverage 95.6 64.8 14.4 91.5 95.6 
Note: Since the true value of 𝑥̅1 is zero, I used RMSE instead of RRMSE. CI stands for confidence interval. The 

95% CI coverage means the proportion of the times the true 𝛽1 was included in the 95% confidence interval in 

1,000 Monte Carlo experiments. 

 

2.9.2 Imputation Model Subset of Analysis Model 

The design of simulation is as follows. The imputation model is equation (2.14), and the 

analysis model is equation (2.15). Other settings follow Section 2.9.1. 

𝑦𝑖 = 𝛽1𝑥1𝑖 + 𝜀𝑖 (2.14) 

𝑦𝑖 = 𝛽1𝑥1𝑖 + 𝛽2𝑥2𝑖 + 𝜀𝑖 (2.15) 

 

When the imputation model is the subset of the analysis model, as is clear in Table 2.15, the 

performances of all the imputation models are quite low. In other words, we should not use the 

analysis model that is larger than the imputation model (Enders, 2010, p.229; Carpenter and 

Kenward, 2013, p.64). 

Table 2.15 The Imputation Model is the Subset of the Analysis Model 

 
Complete 

Data 

Listwise 

Deletion 

Deterministic 

Single 

Imputation 

Stochastic 

Single 

Imputation 

Multiple 

Imputation 

RMSE（𝑥̅1） 0.087 0.739 0.093 0.098 0.094 

RRMSE（𝛽1） 0.036 0.063 0.119 0.117 0.115 
95% CI Coverage 95.3 82.0 5.6 8.9 13.7 
Note: Since the true value of 𝑥̅1 is zero, I used RMSE instead of RRMSE. CI stands for confidence interval. The 

95% CI coverage means the proportion of the times the true 𝛽1 was included in the 95% confidence interval in 

1,000 Monte Carlo experiments. 

 

2.10 Conclusion 

This chapter showed that the imputation methods were adopted according to the types of data 

in the current practice of official statistics among the UNECE member states. Specifically, ratio 

imputation is used for economic data, and hot deck imputation for household data. Also, the 
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estimand in public-use microdata is, by its nature, not limited to the mean and the total, unlike in 

the current practice of official statistics. If the regression coefficient along with the standard error 

is the estimand, this chapter showed that multiple imputation would be best suited for use. 

Appendix 2.1: Example Code of Generating and Analyzing Multiply-Imputed Data 

This appendix presents R-code to generate multiply-imputed data by R-package AMELIA II 

(Honaker et al., 2011) and analyze the multiply-imputed data by R-package Zelig (Imai et al., 

2008). 

First, the imputer treats missing values by multiple imputation, where 𝑀 = 5 (Takahashi and 

Ito, 2013a, pp.48-49). In the example below, five multiply-imputed data files will be created. 

library(Amelia) 

set.seed(6997582) 

a.out < -amelia(data, m = 5) 

write.amelia(obj = a.out, file.stem = "outdata", orig.data = F, 

separate = T, row.names = F) 

 

Next, the imputer prepares the following code, and publishes it along with the five multiply-

imputed data files. The analyst only needs to download the five multiply-imputed data files and 

paste the following code in R. Note that, in order to use this code, R-package hot.deck (Cranmer 

and Gill, 2013) must be installed by the analyst. This code is necessary when the multiply-imputed 

data will be first outputted, and then they will be inputted on another computer. This procedure is 

not explained in the R manuals for AMELIA II and Zelig. 

data1<-read.csv("outdata1.csv",header=T) 

data2<-read.csv("outdata2.csv",header=T) 

data3<-read.csv("outdata3.csv",header=T) 

data4<-read.csv("outdata4.csv",header=T) 

data5<-read.csv("outdata5.csv",header=T) 

idata<-list(imp1 = data1, imp2 = data2, imp3 = data3, imp4 = data4, 

imp5 = data5) 

idata<-list(imputations=idata) 

library(hot.deck) 

midata<-hd2amelia(idata) 

 

Finally, the analyst uses R-package Zelig for statistical analysis (Takahashi and Ito, 2013a, 

p.49). The analyst only needs to specify the variables for use such as x1~x2+x3 and the analysis 
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model model = "ls". Multiple results based on multiply-imputed data will be automatically 

combined by Zelig. 

library(Zelig) 

z.out <- zelig(x1~x2+x3, data = midata, model = "ls", cite = F) 

summary(z.out) 
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3 A Unified Approach to Ratio Imputation for Heteroskedastic Missing 

Variables 

This chapter derived from Takahashi et al. (2017), a peer-reviewed article in the Statistical 

Journal of the IAOS 33(3), which is the flagship journal of the International Association for 

Official Statistics (IAOS) under the umbrella of the International Statistical Institute (ISI). The 

Statistical Journal of the IAOS is indexed in Scopus by Elsevier as of April 2017. The author 

would like to thank IOS Press for permission to use “Imputing the mean of a heteroskedastic log-

normal missing variable: A unified approach to ratio imputation” (coauthored with Iwasaki, M. 

and Tsubaki, H., Statistical Journal of the IAOS, vol.33, no.3, in press). 

3.1 Introduction 

When data are collected through surveys, some values are almost always missing, making the 

survey data incomplete. As Rubin (1987) pointed out, incomplete data are inefficient at best and 

biased at worst when there are systematic differences between respondents and non-respondents. 

Little and Rubin (2002) demonstrate that if the missing mechanism is at random (MAR), then this 

bias can be rectified by imputations. Under the assumption that data are multivariate normal, 

many standard modern imputation methods have been developed, such as regression imputation, 

EM algorithm, and multiple imputation (Schafer, 1997; Donders, 2006; Baraldi and Enders, 2010; 

Cheema, 2014). 

However, the non-normal distribution complicates the issue of imputation, especially when our 

goal is to estimate the mean of the raw data in the original scale. Many economic data are highly 

skewed to the right, examples including, but not limited to, income, earnings, turnover, and GDP. 

These variables also tend to create heteroskedasticity, because the larger values of economic 

variables allow the units to have more discretion for the decisions to make. It is true that if a 

variable is right-skewed and heteroskedastic, taking the log can mitigate the problems 

(Wooldridge, 2009), but this is only valid if the goal is to estimate the mean of log (𝑌𝑖), not the 

mean of 𝑌𝑖 (See Appendix 3.1). To tackle this problem, ratio imputation has been often used to 
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treat missing values in official economic statistics, where the goal of surveys is to estimate the 

mean or the total of a heteroskedastic log-normally distributed variable (Hu et al., 2001; de Waal 

et al., 2011; Thompson and Washington, 2012; Office for National Statistics, 2014). 

In the literature, however, there are three ratio estimators: Ordinary least squares (OLS); ratio 

of means (RoM); and mean of ratios (MoR) (Snowdon, 1992; Eisenhauer, 2003). It is not quite 

obvious which of the estimators best perform when our goal is to estimate the mean of a 

heteroskedastic log-normal variable; thus, leading to a gap between theory and practice. The 

purpose of this chapter is to fill in this gap by assessing which of them should be employed in 

official economic statistics in a unifying manner. 

By way of organization, Section 2 introduces the notations used in the current study and the 

three common assumptions of missing mechanisms. Section 3 explains the three competing ratio 

imputation models. Section 4 discusses how the three ratio estimators can be unified under the 

weighted least squares (WLS) model. Section 5 shows the results of Monte Carlo simulation for 

ratio imputation models. Section 6 presents a novel estimation strategy for imputation model 

selection followed by Monte Carlo simulation to assess the proposed method. Section 7 applies 

the proposed method to real data. Section 8 concludes. 

3.2 Notations and Assumptions of Missing Mechanisms 

The notations used in this chapter are as follows. Let 𝐃 be an 𝑛 × 𝑝 dataset, where 𝑛 is the 

number of observations and 𝑝 is the number of variables. If there are no missing data, we assume 

that 𝐃 is log-normally distributed with the mean vector 𝛍 and variance-covariance matrix 𝚺, 

i.e., 𝐃~𝐿𝑁𝑝(𝛍, 𝚺). An observation index is denoted 𝑖 , where 𝑖 = 1,… , 𝑛 . Ratio imputation 

involves two variables; therefore, 𝐃 = {𝑌𝑖, 𝑋𝑖} , where 𝑌𝑖  is the incomplete variable (target 

variable for imputation) and 𝑋𝑖 is the complete variable (auxiliary variable). Also, let 𝐌 be a 

missing indicator matrix, the dimension of which is the same as 𝐃. Whenever 𝐃 is observed 

𝐌 = 1, and whenever 𝐃 is not observed 𝐌 = 0. Furthermore, 𝐃𝐨𝐛𝐬 refers to the observed part 

of data, and 𝐃𝐦𝐢𝐬 refers to the missing part of data, i.e., 𝐃 = {𝐃𝐨𝐛𝐬, 𝐃𝐦𝐢𝐬}. 
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Next, let us briefly introduce the three common assumptions of missingness (Schafer, 1997; 

King et al., 2001; Allison, 2002; Little and Rubin, 2002). The first assumption is Missing 

Completely At Random (MCAR), where the probability of missingness is independent of the data 

for the unit, i.e., 𝑃(𝐌|𝐃) = 𝑃(𝐌). The second assumption is the case where missingness is 

conditionally at random, traditionally known as Missing At Random (MAR), where the 

conditional probability of missingness given data is equal to the conditional probability of 

missingness given observed data, i.e., 𝑃(𝐌|𝐃) = 𝑃(𝐌|𝐃𝐨𝐛𝐬). The third assumption is Non-

Ignorable (NI), where the missingness probability of a variable depends on the variable’s value 

itself, and we cannot break this relationship conditional on observed data, i.e., 𝑃(𝐌|𝐃) ≠

𝑃(𝐌|𝐃𝐨𝐛𝐬). The current study assumes that the missing mechanism is MAR. 

3.3 Competing Ratio Imputation Models 

This section outlines the three competing ratio imputation models. Suppose that 𝑌𝑖 is missing 

in the current data and that 𝑋𝑖 is fully observed in the previous data. For example, 𝑌𝑖 is turnover 

in year 2016 and 𝑋𝑖 is turnover in year 2015. The missing values of 𝑌𝑖 may be imputed by 

equation (3.1), where the value of 𝛽 reflects the trend between the two time points. 

𝑌̂𝑖 = 𝛽𝑋𝑖,𝑜𝑏𝑠 (3.1) 

 

Note that cold deck imputation is a special case of equation (3.1) (de Waal et al., 2011). While 

the value of 𝛽 in cold deck imputation is assumed to be 1.0, the value of 𝛽 in ratio imputation 

is not assumed to be known and must be estimated from the observed part of data. Since ratio 

imputation is a combination of cold deck and hot deck, some scholars call it warm deck (Shao, 

2000). 

Equation (3.1) takes the form of a simple regression model without an intercept, where the 

value of 𝛽 can be estimated by the following three methods.  

𝛽̂𝑂𝐿𝑆 =
∑𝑋𝑖,𝑜𝑏𝑠𝑌𝑖,𝑜𝑏𝑠

∑𝑋𝑖,𝑜𝑏𝑠
2  

(3.2) 
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𝛽̂𝑅𝑜𝑀 =
𝑌̅𝑖,𝑜𝑏𝑠

𝑋̅𝑖,𝑜𝑏𝑠

 
(3.3) 

 

𝛽̂𝑀𝑜𝑅 =
1

𝑛
∑

𝑌𝑖,𝑜𝑏𝑠

𝑋𝑖,𝑜𝑏𝑠
 

(3.4) 

 

Equation (3.2) is the regression through the origin by OLS (ordinary least squares) (Eisenhauer, 

2003), which we call the OLS imputation model. Equation (3.3) is the ratio-of-means imputation 

model (Rao, 2002; Liang et al., 2008), which we call the RoM imputation model. Equation (3.4) 

is the mean-of-ratios imputation model, which we call the MoR imputation model (Rao, 2002; 

Liang et al., 2008). 

What complicates the matter is the fact that there are opposing views in the literature as to 

which estimator outperforms the others (Table 3.1). 

Table 3.1. Proponents of Various Methods 

Methods Proponents 

Ordinary Least Squares (OLS) Eisenhauer (2003), Gujarati (2003), Wooldridge (2009) 

Ratio of Means (RoM) 

Hu et al. (2001), de Waal et al. (2011), Gupta and Kabe 

(2011), Thompson and Washington (2012), Office for 

National Statistics (2014) 

Mean of Ratios (MoR) 

Hoenig et al. (1997) , Zarnoch and Bechtold (2000), 

Liu et al. (2005) , Zou et al. (2010), Larivière and 

Gingras (2011) 

 

Standard textbooks only discuss the case of OLS, mentioning nothing about RoM and MoR 

(Eisenhauer, 2003; Gujarati, 2003; Wooldridge, 2009). Some scholars recommend RoM as a 

suitable imputation method for economic data, but no comparisons are made with OLS and MoR 

(Hu et al., 2001; de Waal et al., 2011; Thompson and Washington, 2012). Some scholars also 

argue that RoM is less biased than MoR (Gupta and Kabe, 2011; Office for National Statistics, 

2014). Yet, other scholars contend that MoR is less biased than RoM (Hoenig et al., 1997; Zarnoch 

and Bechtold, 2000; Liu et al., 2005; Zou et al., 2010; Larivière and Gingras, 2011). 

Therefore, there is no clear consensus as to which imputation method should be generally used 

for a heteroskedastic log-normal variable. The literature shows that the superiority of the methods 
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differs on a case-by-case basis, but what are the conditions that dictate the superiority of the 

methods? How do we know which condition is relevant to the data we have? The current study 

answers these questions and proposes a solution to how we can choose the best ratio imputation 

model, given the nature of the data in hand. 

3.4 Unifying the Competing Ratio Estimators 

Egghe (2012) contends that the ratio of means (RoM) and the mean of ratios (MoR) are 

equivalent if 𝑏 = 0 under the model of 𝑧 = 𝑎 + 𝑏𝑥, where 𝑧 = 𝑦 𝑥⁄ . Apparently, this model is 

the same as the ratio imputation model described in equation (3.1), where 𝛽 = 𝑎. 

𝑍𝑖 = 𝑎 + 𝑏𝑋𝑖  

𝑌𝑖

𝑋𝑖
= 𝑎 + 𝑏𝑋𝑖 

 

𝑌𝑖

𝑋𝑖
= 𝑎 + 0𝑋𝑖 

 

𝑌𝑖 = 𝑎𝑋𝑖 (3.5) 

 

In fact, OLS is also equivalent to RoM and MoR under this model. From equations (3.6), (3.7) 

and (3.8), it can be easily shown that OLS, RoM, and MoR are exactly the same constant 𝑎 under 

equation (3.5). This is true regardless of the underlying distributions of 𝑌𝑖 and 𝑋𝑖. 

OLS =
∑𝑋𝑖𝑌𝑖

∑𝑋𝑖
2 =

∑𝑋𝑖𝑎𝑋𝑖

∑𝑋𝑖
2 =

∑𝑎𝑋𝑖
2

∑𝑋𝑖
2 =

𝑎 ∑𝑋𝑖
2

∑𝑋𝑖
2 = 𝑎  

(3.6) 

 

MoR =
1

𝑛
∑

𝑌𝑖

𝑋𝑖
=

1

𝑛
∑

𝑎𝑋𝑖

𝑋𝑖
=

1

𝑛
∑𝑎 =

1

𝑛
𝑛𝑎 = 𝑎   

(3.7) 

 

RoM =
∑𝑌𝑖

∑𝑋𝑖
=

∑𝑎𝑋𝑖

∑𝑋𝑖
=

𝑎 ∑𝑋𝑖

∑𝑋𝑖
= 𝑎  

(3.8) 

 

However, what is missing in the above argument is the disturbance component. In other words, 

equation (3.5) specifies the perfect linear relationship between 𝑌𝑖 and 𝑋𝑖. On the other hand, in 

real data, ratio imputation assumes that 𝑌𝑖 and 𝑋𝑖 are not expected to be perfectly related, unlike 
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in cold deck imputation. 

Now, suppose that the population model is equation (3.9), where 𝑌𝑖 and 𝑋𝑖 are log-normally 

distributed and 𝜀𝑖~𝑁(0, 𝜎𝑋𝑖
𝜃), i.e., the mean is zero and the standard deviation is 𝜎𝑋𝑖

𝜃. If we 

estimate the slope 𝛽 by OLS, we obtain 𝛽̂𝑂𝐿𝑆 in equation (3.10). 

𝑌𝑖 = 𝛽𝑋𝑖 + 𝜀𝑖   (3.9) 

 

𝛽̂𝑂𝐿𝑆 =
∑𝑋𝑖𝑌𝑖

∑𝑋𝑖
2   

(3.10) 

 

The fact that 𝑌𝑖 and 𝑋𝑖 are log-normally distributed implies that the standard deviation of 𝜀𝑖 

may not be constant conditional on 𝑋𝑖, i.e., sd(𝜀|𝑋𝑖) = 𝜎𝑋𝑖
𝜃, meaning that 𝜀𝑖 is heteroskedastic 

(Wooldridge, 2009). As is shown in Appendix 3.1, log-transformation may be inappropriate to 

take care of heteroskedasticity if the goal is to estimate the mean of raw data. Instead, following 

Royall (1970) and Cochran (1977), we will use weighted least squares (WLS) to transform 

heteroskedastic errors 𝜀𝑖  into homoskedastic errors 𝛾𝑖 , where 𝛾𝑖~𝑁(0, 𝜎). Since 𝑋𝑖
𝜃  is a 

function of 𝑋𝑖 , 𝜀𝑖 𝑋𝑖
𝜃⁄  has the expected value of zero conditional on 𝑋𝑖 . Also, the standard 

deviation of 𝜀𝑖 𝑋𝑖
𝜃⁄  is 𝜎  conditional on 𝑋𝑖 . Therefore, to correct for heteroskedasticity, 

equation (3.9) is transformed into equation (3.11). 

𝑌𝑖

𝑋𝑖
𝜃

=
𝛽𝑋𝑖

𝑋𝑖
𝜃

+
𝜀𝑖

𝑋𝑖
𝜃
  

(3.11) 

 

For simplicity, let 𝛾𝑖 = 𝜀𝑖 𝑋𝑖
𝜃⁄ . Since 𝑋𝑖 𝑋𝑖

𝜃⁄ = 𝑋𝑖
1−𝜃, we have equation (3.12). This means 

that the WLS estimate of 𝛽 can be obtained from equation (3.13). 

𝑌𝑖

𝑋𝑖
𝜃

= 𝛽𝑋𝑖
1−𝜃 + 𝛾𝑖   

(3.12) 

 

𝛽̂𝑊𝐿𝑆 =

∑𝑋𝑖
1−𝜃 𝑌𝑖

𝑋𝑖
𝜃

∑(𝑋𝑖
1−𝜃)

2 =
∑𝑋𝑖

1−2𝜃𝑌𝑖

∑𝑋𝑖
2(1−𝜃)

  

(3.13) 
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Also, multiplying both sides of equation (3.12) by 𝑋𝑖
𝜃 yields equation (3.14). This clearly 

shows that each of the three competing ratio imputation models is a special case of this generalized 

model. The actual value of 𝛽 depends on the parameter value of 𝜃. Also see Appendix 3.2.1 for 

proof. 

𝑌𝑖 = 𝛽𝑋𝑖 + 𝑋𝑖
𝜃𝛾𝑖  (3.14) 

 

When 𝜃 = 0, equation (3.14) is reduced to equation (3.15), where 𝛽 can be estimated by OLS 

in equation (3.16). This means that, OLS is the best linear unbiased estimator (BLUE) under the 

assumption of homoskedasticity (classical Gauss-Markov theorem). Also see Appendix 3.2.2 for 

proof. 

𝑌𝑖 = 𝛽𝑋𝑖 + 𝛾𝑖   (3.15) 

 

𝛽̂𝑊𝐿𝑆 =
∑𝑋𝑖

1−2𝜃𝑌𝑖

∑𝑋𝑖
2(1−𝜃)

=
∑𝑋𝑖

1−2×0𝑌𝑖

∑𝑋𝑖
2(1−0)

=
∑𝑋𝑖𝑌𝑖

∑𝑋𝑖
2 = 𝛽̂𝑂𝐿𝑆 

(3.16) 

 

When 𝜃 = 0.5, equation (3.14) is reduced to equation (3.17), where 𝛽 can be estimated by 

the ratio of means (RoM) in equation (3.18). This means that RoM is BLUE under the assumption 

of heteroskedasticity that the standard deviation of 𝛾𝑖 is proportional to √𝑋𝑖. Also see Appendix 

3.2.3 for proof. 

𝑌𝑖 = 𝛽𝑋𝑖 + √𝑋𝑖𝛾𝑖 (3.17) 

 

𝛽̂𝑊𝐿𝑆 =
∑𝑋𝑖

1−2𝜃𝑌𝑖

∑𝑋𝑖
2(1−𝜃)

=
∑𝑋𝑖

1−2×0.5𝑌𝑖

∑𝑋𝑖
2(1−0.5)

=
∑𝑋𝑖

0𝑌𝑖

∑𝑋𝑖
=

∑𝑌𝑖 𝑛⁄

∑𝑋𝑖 𝑛⁄
=

𝑌̅

𝑋̅
= 𝛽̂𝑅𝑜𝑀 

(3.18) 

 

When 𝜃 = 1.0, equation (3.14) is reduced to equation (3.19), where 𝛽 can be estimated by 

the mean of ratios (MoR) in equation (3.20). This means that MoR is BLUE under the assumption 

of heteroskedasticity that the standard deviation of 𝛾𝑖 is proportional to 𝑋𝑖. Also see Appendix 

3.2.4 for proof. 
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𝑌𝑖 = 𝛽𝑋𝑖 + 𝑋𝑖𝛾𝑖 (3.19) 

 

𝛽̂𝑊𝐿𝑆 =
∑𝑋𝑖

1−2𝜃𝑌𝑖

∑𝑋𝑖
2(1−𝜃)

=
∑𝑋𝑖

1−2×1𝑌𝑖

∑𝑋𝑖
2(1−1)

=
∑𝑋𝑖

−1𝑌𝑖

∑𝑋𝑖
0 =

∑𝑋𝑖
−1𝑌𝑖

∑1
=

∑𝑋𝑖
−1𝑌𝑖

𝑛
=

1

𝑛
∑𝑋𝑖

−1𝑌𝑖

=
1

𝑛
∑

𝑌𝑖

𝑋𝑖
= 𝛽̂𝑀𝑜𝑅 

(3.20) 

 

Therefore, all of the three estimators are BLUE given an appropriate value of 𝜃. This fact is 

what Cochran (1997) called model-unbiasedness. Furthermore, all of the three estimators are 

BLUE under any sampling plan specified by Royall (1970, p.380). Thus, they are sampling-

unbiased as well. 

3.5 Monte Carlo Evidence for Ratio Imputation Models 

Using the simulated datasets, this section compares the Relative Root Mean Square Errors 

(RRMSE) of the estimators for the mean across different missing data handling techniques. The 

Monte Carlo experiments here are based on 1,000 iterations, each of which is a random draw from 

the following multivariate log-normal distribution with 𝑛 = 1000. 

𝑌𝑖 = 1.1𝑋𝑖 + 𝜀𝑖, where 

𝑋𝑖~𝐿𝑁(meanLog = 0, sdLog = 1) 

𝜀𝑖~𝑁(mean = 0, sd = 𝑋𝑖
𝜃) 

The value of 𝜃 is changed from -1.0 to 2.0 with a 0.1 increment, thus creating 31 different 

patterns of 1,000 datasets, i.e., a total of 31,000 datasets. Note that in other few runs, not reported 

here, the parameter values of 𝛽  were changed, and the conclusions were very similar. 

Computations are done in R 3.2.4, where 𝑋𝑖 is generated by the rlnorm function and 𝜀𝑖 is 

generated by the rnorm function. 

Furthermore, following King et al. (2001), each of these 31,000 datasets is made incomplete 

using the MAR data generation process that was introduced in Section 2. Note that Variable 𝑦 is 

the target incomplete variable for imputation, Variable 𝑥 is completely observed in all of the 
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situations to be used as the auxiliary variable, and Variable 𝑢 is 1,000 sets of continuous uniform 

random numbers ranging from 0 to 1 for the missingness mechanism. Under the assumption of 

MAR, the missingness of 𝑦 depends on the values of 𝑥 and 𝑢. In other words, y is missing if 𝑥 

is smaller than the median of 𝑥 and 𝑢 is larger than 0.5, i.e., 𝑦 missing if 𝑥 < median(𝑥) 

and 𝑢 > 0.5. We assume that the missing values are scattered among small-and-medium size 

enterprises, because the missing values of turnover for large enterprises are collected through 

recontacts in official statistics (de Waal et al., 2011, pp.245-246). The average missing rates are 

set to 25%. 

The overall performance can be assessed by the Mean Square Error (MSE), which is defined 

as equation (3.21), where 𝜗 is the true population parameter and 𝜗̂ is an estimator. The MSE 

measures the spread around the true value of the parameter, suggesting that an estimator with the 

smallest MSE is the best of a competing set of estimators (Gujarati, 2003). 

MSE(𝜗̂) = E(𝜗̂ − 𝜗)
2
 (3.21) 

 

For the ease of interpretation, following Di Zio and Guarnera (2013), this study uses the 

Relative Root Mean Square Error (RRMSE), which is defined as equation (3.22), where 𝜗 is the 

truth, 𝜗̂ is an estimator, and T is the number of trials, i.e., 1,000. In our specific example, 𝜗 is 

𝑌̅. (Note that 𝜗 is a generic parameter notation which is different from 𝜃 as a specific parameter 

for the magnitude of heteroskedasticity.) 

RRMSE(𝜗̂) = √
1

𝑇
∑(

𝜗̂ − 𝜗

𝜗
)

2𝑇

𝑡=1

  

(3.22) 

 

The results are presented in Figure 3.1. As was theoretically expected, in terms of the 

comparison among the ratio imputation models, it boils down to the assumption of 𝑋𝑖
𝜃𝛾𝑖. If 𝜃 is 

less than 0.5, the MoR model consistently performs worse than the RoM and OLS models, but 

the performance of the RoM and OLS models is almost indistinguishable. When 𝜃 is larger than 
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0.6, the performance of the OLS model gets rapidly worse while the RoM model performs best. 

Up to the point where 𝜃 = 1.0, the RoM model well competes against the MoR model. Only 

when 𝜃 is larger than 1.0, can the MoR model consistently perform better than the RoM model. 

 
Figure 3.1. Relative root mean square error comparisons for different values of 𝜃 among the 

three competing ratio imputation models 

 

In fact, when 𝜃 is 0.0 the OLS model is the best of imputing the mean of 𝑌𝑖, when 𝜃 is 0.5 

the RoM model is the best of imputing the mean of 𝑌𝑖, and when 𝜃 is 1.0 the MoR model is the 

best of imputing the mean of 𝑌𝑖. The results in Figure 3.1 imply that, if we could get to know the 

value of 𝜃, we would be better off in imputing the mean of a heteroskedastic log-normal variable. 

3.6 Estimating the Value of Theta 

As Gujarati (2003) notes, “heteroskedasticity may be a matter of intuition, educated guesswork, 

prior empirical experience, or sheer speculation” (p.401). The literature is devoid of the method 
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of estimating 𝜃. This section presents an attempt to estimate the value of 𝜃, trying to go beyond 

intuition, educated guesswork, prior empirical experience, or sheer speculation. In this section, 

two methods are presented: One is a graphical method of guesstimating 𝜃; and the other is a 

numerical method of estimating 𝜃. 

3.6.1 Graphical Method of Guesstimating Theta 

Cochran (1977) recommends, “When we are trying to decide what kind of estimate to use, a 

graph in which the sample values of 𝑦𝑖 are plotted against those of 𝑥𝑖 is helpful” (pp.159-160). 

This serves as an informal method of guessing the value of 𝜃. Zarnoch and Bechtold (2000) 

followed Cochran’s (1977) advice when they decided which ratio estimator to use in their analysis. 

Following this recommendation, Figure 3.2 presents scatterplots between 𝑌𝑖 and 𝑋𝑖, where 

the values of 𝜃 are changed from -1.0 to 1.5 in a 0.5 increment, using the same specification in 

Section 3.5. These are the theoretical graphs we can expect to see with different 𝜃 values and 

may be used as a quick guide for the diagnostic purposes. A complete R-code is included in 

Appendix 3.3. 

3.6.2 Numerical Method of Estimating Theta 

Before proceeding to the presentation of the proposed method, our journey should start with 

the Breusch-Pagan test for heteroskedasticity (Gujarati, 2003; Wooldridge, 2009). If the result in 

this test turns out to be statistically significant, then data are heteroskedastic; otherwise, data are 

assumed to be homoskedastic, meaning that 𝜃 = 0. Therefore, we should first apply this method. 

If the test result is statistically significant, the proposed method in this section will be helpful in 

determining the value of 𝜃. An interested reader may be referred to Hothorn et al. (2015), who 

present the R-function to perform this test. 
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Figure 3.2. Theoretical Scatterplots between 𝑌𝑖 and 𝑋𝑖 based on different values of 𝜃 from 

-1.0 to 1.5, where 𝑛 = 1,000,000. 

 

Suppose that the population model is equation (3.9). An assumption required for the proposed 

method of estimation is that the functional form of the population model is known. 𝑌𝑖 and 𝑋𝑖 

are given in the data. Remember that sd(𝜀|𝑋) = 𝜎𝑋𝜃. Therefore, what is unknown here is the 

values of 𝛽 and 𝜃. In order to correctly estimate the value of 𝛽, we need to estimate the value 

of 𝜃. 

𝑌𝑖 = 𝛽𝑋𝑖 + 𝜀𝑖 (3.9) 

 

Our method tries to estimate the value of 𝜃 with no assumptions on the value of 𝛽. Cochran’s 
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(1977) recommendation of the graph of 𝑦𝑖 plotted against 𝑥𝑖 is insightful, on which our strategy 

will be based as in equation (3.23), where 𝑄1𝑋, 𝑄2𝑋, and 𝑄3𝑋 represent the 1st quartile of 𝑋𝑖, 

2nd quartile of 𝑋𝑖, and 3rd quartile of 𝑋𝑖, respectively; sd(𝑌𝑖) represents the standard deviation 

of 𝑌𝑖 ; thus, sd(𝑌𝑖)𝑄1𝑋
 is the standard deviation of 𝑌𝑖  between the minimum and the 25th 

percentile of 𝑋𝑖, sd(𝑌𝑖)𝑄2𝑋
 is the standard deviation of 𝑌𝑖 between the 25th percentile and the 

50th percentile of 𝑋𝑖, and sd(𝑌𝑖)𝑄3𝑋
 is the standard deviation of 𝑌𝑖 between the 50th percentile 

and the 75th percentile of 𝑋𝑖. 

𝜃 =
1

2
(
sd(𝑌𝑖)𝑄2𝑋

− sd(𝑌𝑖)𝑄1𝑋

sd(𝑌𝑖)𝑄1𝑋

+
sd(𝑌𝑖)𝑄3𝑋

− sd(𝑌𝑖)𝑄2𝑋

sd(𝑌𝑖)𝑄2𝑋

)
exp(1)

exp (sd(log(𝑋𝑖)))
 

(3.23) 

 

First, we categorize the data into four groups based on the values of 𝑋𝑖, i.e., the 25th percentile, 

50th percentile, and 75th percentile, where we calculate the standard deviation of 𝑌𝑖  in each 

category. We take the growth rate from the first category to the second category, and the second 

category to the third category. We will ignore the fourth category because a large number of 

outliers exist in this area. Then, we take the average of the two growth rates. Since our model is 

two-variable, if the standard deviation of log(𝑋𝑖) is 1.0, this shows the dispersion of 𝜀𝑖; in other 

words, this approximately estimates the value of 𝜃. However, the variance of 𝑌𝑖 depends on both 

the variances of 𝑋𝑖  and 𝜀𝑖 . When the standard deviation of log(𝑋𝑖) is not 1.0, we need a 

correction factor. This can be attained through dividing exp(1) by the exponent of the standard 

deviation of log(𝑋𝑖), which takes the dispersion of 𝑋𝑖 into account. Note that if the standard 

deviation of log(𝑋𝑖) is 1.0, this correction factor will be exp(1) exp(1)⁄ = 1.0. A complete R-

code is included in Appendix 3.4. 

With only one equation in hand, it is not possible to analytically solve the two unknowns, 𝛽 

and 𝜃. Therefore, we cannot analytically evaluate equation (3.23). Instead, we use simulation to 

assess equation (3.23) across different parameter settings. As before, the Monte Carlo experiments 

here are based on 1,000 iterations, each of which is a random draw from the following multivariate 
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log-normal distribution with 𝑛 = 1000. 

𝑌𝑖 = 𝛽𝑋𝑖 + 𝜀𝑖, where 

𝑋𝑖~𝐿𝑁(meanLog = 𝜇, sdLog = 𝜎) 

𝜀𝑖~𝑁(mean = 0, sd = 𝑋𝑖
𝜃) 

The value of 𝛽 is from 0.6 to 1.6 with a 0.5 increment, the value of 𝜇 is from 0.0 to 1.0 with a 

0.5 increment, the value of 𝜎 is from 1.0 to 2.0 with a 0.5 increment, and the value of 𝜃 is from 

-0.5 to 1.5 with a 0.5 increment, thus creating 135 different patterns of 1,000 datasets, i.e., a total 

of 135,000 datasets. Computations are done in R 3.2.4, where 𝑋𝑖 is generated by the rlnorm 

function and 𝜀𝑖 is generated by the rnorm function. The reported values are the average value 

of estimated 𝜃 based on 1,000 iterations followed by RMSE in parentheses. Note that the values 

in parentheses are the Root Mean Squared Error (RMSE), not the Relative Root Mean Squared 

Error (RRMSE), because in case of 𝜃 = 0, RRMSE will be undefined. 

The results are presented in Table 3.2. Regardless of the parameter values of 𝛽, 𝜇, and 𝜎, the 

performance of the proposed method is quite high in estimating the value of 𝜃, when the true 

value of 𝜃 is 0.0, 0.5, or 1.0. Based on the estimated value of 𝜃 after rounding, we can easily 

choose among equations (3.2), (3.3), and (3.4). When the true value of 𝜃 is -0.5, there is some 

difficulty, where the estimated value is between -0.338 and 0.146. However, our method first 

applies the Breusch-Pagan test for heteroskedasticity. Thus, if the true state of the world is 

homoskedasticity, then the Breusch-Pagan test would not reject the null hypothesis. Therefore, if 

we reject the Breusch-Pagan test and our method estimates 𝜃 being less than 0.0, then the true 

value of 𝜃 is assumed to be negative. Also, when the true value of 𝜃 is 1.5, there is some 

difficulty, where the estimated value is between 1.541 and 2.443; however, we can be still 

confident that if the estimated value is larger than 1.5, then the true value of 𝜃 is not 0.0, 0.5, or 

1.0. After all, our goal is to choose one of the ratio imputation models from equations (3.2), (3.3), 

and (3.4). 
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Table 3.2. Results of estimated 𝜃 values with different parameter settings 

 𝜃 

−0.5 0.0 0.5 1.0 1.5 

𝛽 = 0.6 

𝜇 = 0.0 

𝜎 = 1.0 
-0.338 

(0.164) 

0.001 

(0.008) 

0.466 

(0.061) 

1.070 

(0.110) 

1.860 

(0.386) 

𝜎 = 1.5 
-0.233 

(0.286) 

0.000 

(0.004) 

0.467 

(0.052) 

1.155 

(0.175) 

2.154 

(0.672) 

𝜎 = 2.0 
-0.018 

(0.486) 

0.000 

(0.003) 

0.417 

(0.093) 

1.124 

(0.157) 

2.261 

(0.786) 

𝜇 = 0.5 

𝜎 = 1.0 
-0.317 

(0.185) 

0.000 

(0.007) 

0.467 

(0.060) 

1.069 

(0.108) 

1.893 

(0.416) 

𝜎 = 1.5 
-0.203 

(0.310) 

0.001 

(0.006) 

0.469 

(0.052) 

1.149 

(0.170) 

2.235 

(0.7523) 

𝜎 = 2.0 
-0.013 

(0.489) 

0.001 

(0.009) 

0.423 

(0.092) 

1.123 

(0.168) 

2.356 

(0.887) 

𝜇 = 1.0 

𝜎 = 1.0 
-0.240 

(0.262) 

0.002 

(0.012) 

0.467 

(0.061) 

1.070 

(0.109) 

1.908 

(0.432) 

𝜎 = 1.5 
-0.106 

(0.397) 

0.002 

(0.014) 

0.479 

(0.050) 

1.155 

(0.178) 

2.273 

(0.794) 

𝜎 = 2.0 
-0.003 

(0.497) 

0.002 

(0.016) 

0.440 

(0.080) 

1.121 

(0.160) 

2.443 

(0.972) 

𝛽 = 1.1 

𝜇 = 0.0 

𝜎 = 1.0 
-0.323 

(0.179) 

0.001 

(0.008) 

0.466 

(0.059) 

1.032 

(0.084) 

1.711 

(0.241) 

𝜎 = 1.5 
-0.214 

(0.300) 

0.002 

(0.009) 

0.483 

(0.045) 

1.111 

(0.134) 

1.900 

(0.424) 

𝜎 = 2.0 
-0.014 

(0.488) 

0.001 

(0.009) 

0.449 

(0.063) 

1.079 

(0.122) 

1.910 

(0.440) 

𝜇 = 0.5 

𝜎 = 1.0 
-0.262 

(0.240) 

0.003 

(0.014) 

0.469 

(0.059) 

1.030 

(0.085) 

1.788 

(0.314) 

𝜎 = 1.5 
-0.130 

(0.375) 

0.002 

(0.016) 

0.498 

(0.040) 

1.109 

(0.140) 

2.021 

(0.542) 

𝜎 = 2.0 
-0.005 

(0.495) 

0.003 

(0.022) 

0.475 

(0.053) 

1.080 

(0.124) 

2.080 

(0.604) 

𝜇 = 1.0 

𝜎 = 1.0 
-0.088 

(0.414) 

0.004 

(0.021) 

0.471 

(0.057) 

1.033 

(0.085) 

1.848 

(0.374) 

𝜎 = 1.5 
0.037 

(0.539) 

0.005 

(0.033) 

0.519 

(0.047) 

1.105 

(0.132) 

2.133 

(0.650) 

𝜎 = 2.0 
0.011 

(0.512) 

0.008 

(0.044) 

0.512 

(0.052) 

1.087 

(0.117) 

2.210 

(0.734) 

𝛽 = 1.6 

𝜇 = 0.0 

𝜎 = 1.0 
-0.303 

(0.198) 

0.003 

(0.013) 

0.468 

(0.061) 

0.987 

(0.081) 

1.541 

(0.117) 

𝜎 = 1.5 
-0.184 

(0.326) 

0.002 

(0.012) 

0.505 

(0.043) 

1.056 

(0.094) 

1.665 

(0.205) 

𝜎 = 2.0 
-0.009 

(0.492) 

0.002 

(0.015) 

0.493 

(0.049) 

1.030 

(0.098) 

1.656 

(0.220) 

𝜇 = 0.5 

𝜎 = 1.0 
-0.195 

(0.307) 

0.004 

(0.021) 

0.471 

(0.058) 

0.981 

(0.079) 

1.666 

(0.207) 

𝜎 = 1.5 
-0.059 

(0.443) 

0.004 

(0.027) 

0.529 

(0.052) 

1.058 

(0.094) 

1.817 

(0.343) 

𝜎 = 2.0 
0.003 

(0.503) 

0.005 

(0.035) 

0.535 

(0.060) 

1.031 

(0.110) 

1.822 

(0.356) 

𝜇 = 1.0 

𝜎 = 1.0 
0.039 

(0.542) 

0.006 

(0.037) 

0.475 

(0.057) 

0.981 

(0.081) 

1.751 

(0.279) 

𝜎 = 1.5 
0.146 

(0.651) 

0.008 

(0.050) 

0.565 

(0.082) 

1.056 

(0.094) 

1.955 

(0.477) 

𝜎 = 2.0 
0.020 

(0.524) 

0.008 

(0.053) 

0.582 

(0.105) 

1.031 

(0.099) 

1.986 

(0.518) 

Note: The reported values are the average value of estimated 𝜃 based on 1,000 iterations 

followed by RMSE in parentheses. 
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Therefore, no matter what the parameter values of 𝛽, 𝜇, and 𝜎, our proposed method allows 

us to choose an appropriate imputation model from equations (3.2), (3.3), and (3.4), when the true 

value of 𝜃 is 0.0, 0.5, or 1.0. 

3.7 Example: Application to Real Economic Data 

The issue under investigation is of particular importance in official economic statistics because 

the primary goal of surveys in official statistics is to calculate the total (or the mean) of a 

heteroskedastic log-normal variable. However, the current issue may be also relevant in other 

areas of social statistics, such as a cross-national comparison of GDP. 

This section illustrates the application of the proposed method to a concrete real dataset, by 

utilizing Penn World Table 9.0 (Feenstra et al., 2016), where we obtained CGDPe in 2011 and 

CGDPo in 2005. CGDPe is “expenditure-side real GDP at current PPPs, to compare relative living 

standards across countries at a single point in time” and CGDPo is “output-side real GDP at 

current PPPs, to compare relative productive capacity across countries at a single point in time” 

(Feenstra et al., 2016). The number of observations is 167 countries. Table 3.3 presents the 

summary statistics of the two variables. 

Table 3.3. Summary Statistics 

 Min. 1st Qu. Median Mean 3rd Qu. Max. Std.Dev. 

CGDPe2011 488 20690 69060 556000 357000 15590000 1756865 

CGDPo2005 369 14950 42970 415300 239200 14710000 1419322 

 

Figure 3.3 graphically displays the distributions of the two variables, which shows that 

CGDPe2011 and CGDPo2005 are both highly skewed to the right, but their distributions are close 

to normality after log-transformation. Therefore, these variables can be considered log-normal. 

The correlation between CGDPe2011 and CGDPo2005 is 0.975, but as Figure 3.4 graphically 

presents, the relationship between the two variables may not be homoskedastic. Therefore, these 

variables can be considered heteroskedastic log-normal. 
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Figure 3.3. Histograms of CGDPe2011 and CGDPo2005. 

 

 
Figure 3.4. Scatterplot of CGDPe2011 and CGDPo2005. 
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Following the simulation settings in Section 3.5, the missing mechanism is introduced as MAR, 

meaning that the missingness of CGDPe2011 depends on the values of CGDPo2005 and uniform 

random numbers. In other words, CGDPe2011 is missing if CGDPo2005 is smaller than the 

median of CGDPo2005 and a uniform random number is larger than 0.5; thus, the missing rate is 

again set to 25%. We will impute the missing values in CGDPe2011 by using CGDPo2005 as an 

auxiliary variable in equation (3.24), where 𝛽̂ is estimated by OLS, RoM, and MoR. 

CGDPe2011̂
𝑖 = 𝛽̂ × CGDPo2005𝑖 (3.24) 

 

If we apply the proposed method to this dataset, the estimated value of 𝜃 is 0.93. Therefore, 

our method predicts that the imputations by MoR would be best in comparison with listwise 

deletion, RoM, and OLS. The results are summarized in Table 3.4. As was predicted by our 

method, the difference between the truth and MoR is smallest (Difference = 1071), followed by 

RoM (Difference = 1463) and OLS (Difference = 1873). 

Table 3.4. Results of Example Data Analysis 

 Truth Listwise OLS RoM MoR 

Mean 555982 695702 554109 554518 554911 

Difference  140791 1873 1463 1071 

 

3.8 Conclusions 

The method proposed in the current study calculates the standard deviations of 𝑌𝑖 below the 

first, second, and third quartiles, and estimates the magnitude of heteroskedasticity, with a 

correction factor for the variance of 𝑋𝑖. The results in the Monte Carlo simulation give a strong 

support for the method. 

If the estimated value of 𝜃 is less than 1.0, then the ratio of means (RoM) should be used as a 

ratio imputation model. If the estimated value of 𝜃 is larger than 1.0, then the mean of ratios 

(MoR) should be used as a ratio imputation model. If the estimated value of 𝜃 is less than 0.3, 

OLS may be used as a ratio imputation model; however, our simulation results suggest that the 

performance of RoM is quite similar to that of OLS even when 𝜃 is less than 0.3. 

The proposed method should be regarded as a first step toward the estimation of the 𝜃 value. 



46 

 

Future research should expand this method, in order to make it more rigorous and robust. One 

course of future research may be to apply this method to a variety of real economic data. 

Appendix 3.1 

Suppose that our goal is to estimate the population mean. Also, suppose that the population 

model is equation (3.9) with no intercept and the slope 𝛽, where 𝑌𝑖 and 𝑋𝑖 are log-normally 

distributed.  

𝑌𝑖 = 𝛽𝑋𝑖 + 𝜀𝑖 (3.9) 

 

Since 𝑌𝑖  and 𝑋𝑖  are log-normally distributed, log-transformation will produce normally 

distributed data. However, often times in official statistics, the estimation of the mean of 𝑌̂𝑖 is 

the goal, and the estimation of the mean of log(𝑌𝑖)̂  is hardly the goal. If the estimated model 

after log-transformation is equation (3.25), the associated true model is equation (3.26). This 

means that the estimated model in raw data is equation (3.27) and the true model in raw data is 

equation (3.28) (Gujarati, 2003; Wooldridge, 2009).  

log(𝑌𝑖)̂ = 𝛿̂log(𝑋𝑖) (3.25) 

 

log(𝑌𝑖) = 𝛿log(𝑋𝑖) + 𝜀𝑖 (3.26) 

 

𝑌̂𝑖 = 𝑋𝑖
𝛿̂ (3.27) 

 

𝑌𝑖 = 𝑋𝑖
𝛿exp (𝜀𝑖) (3.28) 

 

Let 𝜇 be the mean and 𝜎2 be the variance. Then, the expected value of log-normal variable 

𝑌𝑖 is equation (3.29) (DeGroot and Schervish, 2002). This clearly shows that the exponent of 

log(𝑌𝑖)̂  systematically underestimates the expected value of 𝑌𝑖  by the order of exp(𝜎2 2⁄ ). 

Since 𝜎2  is unknown, there are no universal ways of adjusting for this error (Also see 

Wooldridge, 2009, pp.210-212). 
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E(𝑌) = exp (𝜇 +
𝜎2

2
) = exp(𝜇)exp(

𝜎2

2
) 

(3.29) 

 

This echoes von Hippel’s (2013) finding that the safest way to impute a skewed variable using 

a normal model is to do so with no transformations. 

Appendix 3.2 

This appendix shows the expectations and the variances of the three estimators. First, the 

generalized outcome by weighted least squares (WLS) will be shown, followed by the specialized 

outcomes by ordinary least squares (OLS), ratio of means (RoM), and mean of ratios (MoR). We 

assume that the population model is equation (9), where 𝜀𝑖~𝑁(0, 𝜎𝑋𝑖
𝜃), i.e., the mean is zero and 

the standard deviation is 𝜎𝑋𝑖
𝜃. 

𝑌𝑖 = 𝛽𝑋𝑖 + 𝜀𝑖 (3.9) 

 

In the following derivations, the usual assumptions in the classical Gauss Markov theorem 

apply (Gujarati, 2003, pp.66-71; Wooldridge, 2009, pp.157-158), except for the assumption of 

homoskedasticity. Assumption 1 states that the model is linear in the parameters as shown in 

equation (3.9). Assumption 2 states that 𝑛  observations are randomly sampled from the 

population model of equation (3.9). Assumption 3 states that the values of 𝑋𝑖  are fixed in 

repeated sampling, i.e., E(𝑋𝑖) is nonstochastic; thus, this can be treated as constant. Assumption 

4 states that the error term 𝜀𝑖  has an expected value of zero given 𝑋𝑖 , i.e., E(𝜀𝑖|𝑋𝑖) = 0 . 

Assumption 5 states zero covariance between 𝜀𝑖 and 𝑋𝑖, i.e., E(𝜀𝑖𝑋𝑖) = 0. 

In the derivations below, we will extensively use the following three properties of expected 

values (Wooldridge, 2009, p.724). Property 1 states that for any constant c, E[𝑐] = 𝑐. Property 2 

states that for any constants a and b, E[𝑎𝑋 + 𝑏] = 𝑎E[𝑋] + 𝑏. Property 3 states that if 𝑎𝑖 are 

constants and 𝑋𝑖 are random variables, where 𝑖 = 1,…𝑛, then E[∑𝑎𝑖𝑋𝑖] = ∑𝑎𝑖E[𝑋𝑖]. 

Note that, in all equations below, the sums are taken from 𝑖 = 1…𝑛 , that is, across all 

observations in the sample. Therefore, the limits of summation are not shown. 
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∑𝑋𝑖 = ∑𝑋𝑖

𝑛

𝑖=1

 

Appendix 3.2.1 

The expected value of 𝛽̂𝑊𝐿𝑆  can be proven to be 𝛽 ; therefore it is unbiased under the 

population model of equation (3.9). 

𝛽̂𝑊𝐿𝑆 =
∑𝑋𝑖

1−2𝜃𝑌𝑖

∑𝑋𝑖
2(1−𝜃)

 

𝛽̂𝑊𝐿𝑆 =
∑𝑋𝑖

1−2𝜃(𝛽𝑋𝑖 + 𝜀𝑖)

∑𝑋𝑖
2(1−𝜃)

 

𝛽̂𝑊𝐿𝑆 =
𝛽 ∑𝑋𝑖

2(1−𝜃)
+ ∑𝑋𝑖

1−2𝜃 𝜀𝑖

∑𝑋𝑖
2(1−𝜃)

 

𝛽̂𝑊𝐿𝑆 = 𝛽 +
∑𝑋𝑖

1−2𝜃 𝜀𝑖

∑𝑋𝑖
2(1−𝜃)

 

E[𝛽̂𝑊𝐿𝑆] = E [𝛽 +
∑𝑋𝑖

1−2𝜃 𝜀𝑖

∑𝑋𝑖
2(1−𝜃)

] 

E[𝛽̂𝑊𝐿𝑆] = E[𝛽] + E [
∑𝑋𝑖

1−2𝜃 𝜀𝑖

∑𝑋𝑖
2(1−𝜃)

] 

E[𝛽̂𝑊𝐿𝑆] = 𝛽 

The last term on the right-hand side drops out, because we assume that the value of the 

covariance between the independent variable 𝑋𝑖 and the error term 𝜀𝑖 is zero. Also see Gujarati 

(2003, p.100-101) and Wooldridge (2009, pp.114-116) as a reference guide. 

The variance of 𝛽̂𝑊𝐿𝑆  can be shown to be 𝜎2 ∑𝑋𝑖
2(1−𝜃)

⁄ , which is guaranteed to be the 

minimum variance. If the original equation meets the five Gauss-Markov assumptions (except 

homoskedasticity), then 𝛽̂𝑊𝐿𝑆  meets all of the six Gauss-Markov assumptions including 

homoskedasticity (Gujarati, 2003, p.415; Wooldridge, 2009, p.278). 
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V(𝛽̂𝑊𝐿𝑆) = E [(𝛽̂𝑊𝐿𝑆 − 𝛽)
2
] 

V(𝛽̂𝑊𝐿𝑆) =
∑𝑋𝑖

2(1−2𝜃)

(∑𝑋𝑖
2(1−𝜃)

)
2 𝜎2𝑋𝑖

2𝜃 

V(𝛽̂𝑊𝐿𝑆) =
𝜎2 ∑𝑋𝑖

2(1−𝜃)

(∑𝑋𝑖
2(1−𝜃)

)
2 

V(𝛽̂𝑊𝐿𝑆) =
𝜎2

∑𝑋𝑖
2(1−𝜃)

 

When 𝜃 = 0, the following is the minimum variance. 

V(𝛽̂𝑊𝐿𝑆) =
𝜎2

∑𝑋𝑖
2(1−𝜃)

=
𝜎2

∑𝑋𝑖
2 

When 𝜃 = 0.5, the following is the minimum variance. 

V(𝛽̂𝑊𝐿𝑆) =
𝜎2

∑𝑋𝑖
 

When 𝜃 = 1.0, the following is the minimum variance. 

V(𝛽̂𝑊𝐿𝑆) =
𝜎2

𝑛
 

Appendix 3.2.2 

The expected value of 𝛽̂𝑂𝐿𝑆  can be proven to be 𝛽 ; therefore it is unbiased under the 

population model of equation (3.9). 

𝛽̂𝑂𝐿𝑆 =
∑𝑋𝑖𝑌𝑖

∑𝑋𝑖
2  

𝛽̂𝑂𝐿𝑆 =
∑𝑋𝑖(𝛽𝑋𝑖 + 𝜀𝑖)

∑𝑋𝑖
2  

𝛽̂𝑂𝐿𝑆 =
𝛽 ∑𝑋𝑖

2 + ∑𝑋𝑖 𝜀𝑖

∑𝑋𝑖
2  

𝛽̂𝑂𝐿𝑆 = 𝛽 +
∑𝑋𝑖 𝜀𝑖

∑𝑋𝑖
2  
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E[𝛽̂𝑂𝐿𝑆] = E [𝛽 +
∑𝑋𝑖 𝜀𝑖

∑𝑋𝑖
2 ] 

E[𝛽̂𝑂𝐿𝑆] = E[𝛽] + E [
∑𝑋𝑖 𝜀𝑖

∑𝑋𝑖
2 ] 

E[𝛽̂𝑂𝐿𝑆] = 𝛽 

The last term on the right-hand side drops out, because we assume that the value of the 

covariance between the independent variable 𝑋𝑖 and the error term 𝜀𝑖 is zero. Also see Gujarati 

(2003, p.100-101) and Wooldridge (2009, pp.114-116) as a reference guide. 

The variance of 𝛽̂𝑂𝐿𝑆  can be shown to be 𝜎2 ∑𝑋𝑖
2(1+𝜃)

(∑𝑋𝑖
2)

2
⁄ , which is equal to the 

minimum variance of V(𝛽̂𝑊𝐿𝑆) when 𝜃 = 0. 

V(𝛽̂𝑂𝐿𝑆) = E [(𝛽̂𝑂𝐿𝑆 − 𝛽)
2
] 

V(𝛽̂𝑂𝐿𝑆) =
1

(∑𝑋𝑖
2)

2 ∑𝑋𝑖
2𝜎2𝑋𝑖

2𝜃 

V(𝛽̂𝑂𝐿𝑆) =
𝜎2 ∑𝑋𝑖

2𝑋𝑖
2𝜃

(∑𝑋𝑖
2)

2  

V(𝛽̂𝑂𝐿𝑆) =
𝜎2 ∑𝑋𝑖

2(1+𝜃)

(∑𝑋𝑖
2)

2  

When 𝜃 = 0, 

V(𝛽̂𝑂𝐿𝑆) =
𝜎2 ∑𝑋𝑖

2(1+𝜃)

(∑𝑋𝑖
2)

2 =
𝜎2 ∑𝑋𝑖

2

(∑𝑋𝑖
2)

2 =
𝜎2

∑𝑋𝑖
2 = V(𝛽̂𝑊𝐿𝑆) 

When 𝜃 = 0.5, 

V(𝛽̂𝑂𝐿𝑆) =
𝜎2 ∑𝑋𝑖

2(1+𝜃)

(∑𝑋𝑖
2)

2 =
𝜎2 ∑𝑋𝑖

3

(∑𝑋𝑖
2)

2 

When 𝜃 = 1.0, 

V(𝛽̂𝑂𝐿𝑆) =
𝜎2 ∑𝑋𝑖

2(1+𝜃)

(∑𝑋𝑖
2)

2 =
𝜎2 ∑𝑋𝑖

4

(∑𝑋𝑖
2)

2 
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Therefore, when 𝜃 = 0, V(𝛽̂𝑂𝐿𝑆) is equal to V(𝛽̂𝑊𝐿𝑆), which proves that 𝛽̂𝑂𝐿𝑆  is BLUE 

with 𝜃 being 0. 

Appendix 3.2.3 

The expected value of 𝛽̂𝑅𝑜𝑀  can be proven to be 𝛽 ; therefore it is unbiased under the 

population model of equation (3.9). 

𝛽̂𝑅𝑜𝑀 =
∑𝑌𝑖

∑𝑋𝑖
 

𝛽̂𝑅𝑜𝑀 =
∑(𝛽𝑋𝑖 + 𝜀𝑖)

∑𝑋𝑖
 

𝛽̂𝑅𝑜𝑀 =
𝛽 ∑𝑋𝑖 + ∑𝜀𝑖

∑𝑋𝑖
 

𝛽̂𝑅𝑜𝑀 = 𝛽 +
∑𝜀𝑖

∑𝑋𝑖
 

E[𝛽̂𝑅𝑜𝑀] = E [𝛽 +
∑𝜀𝑖

∑𝑋𝑖
] 

E[𝛽̂𝑅𝑜𝑀] = E[𝛽] + E [
∑ 𝜀𝑖

∑𝑋𝑖
] 

E[𝛽̂𝑅𝑜𝑀] = 𝛽 +
E[∑ 𝜀𝑖]

∑𝑋𝑖
 

E[𝛽̂𝑅𝑜𝑀] = 𝛽 +
∑E[𝜀𝑖]

∑𝑋𝑖
 

E[𝛽̂𝑅𝑜𝑀] = 𝛽 

The last term on the right-hand side drops out, because we assume that the expected value of 

𝜀𝑖 is zero. 

The variance of 𝛽̂𝑅𝑜𝑀 can be shown to be 𝜎2 ∑𝑋𝑖
2𝜃 (∑𝑋𝑖)

2⁄ , which is equal to the minimum 

variance of V(𝛽̂𝑊𝐿𝑆) when 𝜃 = 0.5. 

V(𝛽̂𝑅𝑜𝑀) = E [(𝛽̂𝑅𝑜𝑀 − 𝛽)
2
] 
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V(𝛽̂𝑅𝑜𝑀) =
1

(∑𝑋𝑖)
2
∑𝜎2𝑋𝑖

2𝜃 

V(𝛽̂𝑅𝑜𝑀) =
𝜎2 ∑𝑋𝑖

2𝜃

(∑𝑋𝑖)
2

 

When 𝜃 = 0, 

V(𝛽̂𝑅𝑜𝑀) =
𝜎2 ∑𝑋𝑖

2𝜃

(∑𝑋𝑖)
2

=
𝜎2 ∑𝑋𝑖

0

(∑𝑋𝑖)
2

=
𝜎2 ∑1

(∑𝑋𝑖)
2

=
𝑛𝜎2

(∑𝑋𝑖)
2
 

When 𝜃 = 0.5, 

V(𝛽̂𝑅𝑜𝑀) =
𝜎2 ∑𝑋𝑖

2𝜃

(∑𝑋𝑖)
2

=
𝜎2 ∑𝑋𝑖

(∑𝑋𝑖)
2

=
𝜎2

∑𝑋𝑖
= V(𝛽̂𝑊𝐿𝑆) 

When 𝜃 = 1.0, 

V(𝛽̂𝑅𝑜𝑀) =
𝜎2 ∑𝑋𝑖

2𝜃

(∑𝑋𝑖)
2

=
𝜎2 ∑𝑋𝑖

2

(∑𝑋𝑖)
2

 

Therefore, when 𝜃 = 0.5, V(𝛽̂𝑅𝑜𝑀) is equal to V(𝛽̂𝑊𝐿𝑆), which proves that 𝛽̂𝑅𝑜𝑀 is BLUE 

with 𝜃 being 0.5. 

Appendix 3.2.4 

The expected value of 𝛽̂𝑀𝑜𝑅  can be proven to be 𝛽 ; therefore it is unbiased under the 

population model of equation (3.9). 

𝛽̂𝑀𝑜𝑅 =
1

𝑛
∑

𝑌𝑖

𝑋𝑖
 

𝛽̂𝑀𝑜𝑅 =
1

𝑛
∑

𝛽𝑋𝑖 + 𝜀𝑖

𝑋𝑖
 

𝛽̂𝑀𝑜𝑅 = 𝛽 +
1

𝑛
∑

𝜀𝑖

𝑋𝑖
 

E⌊𝛽̂𝑀𝑜𝑅⌋ = E [𝛽 +
1

𝑛
∑

𝜀𝑖

𝑋𝑖
] 

E[𝛽̂𝑀𝑜𝑅] = E[𝛽] + E [
1

𝑛
∑

𝜀𝑖

𝑋𝑖
] 
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E[𝛽̂𝑀𝑜𝑅] = 𝛽 +
1

𝑛
E [∑

𝜀𝑖

𝑋𝑖
] 

E[𝛽̂𝑀𝑜𝑅] = 𝛽 +
1

𝑛
∑

E[𝜀𝑖]

𝑋𝑖
 

E⌊𝛽̂𝑀𝑜𝑅⌋ = 𝛽 

The last term on the right-hand side drops out, because we assume that the expected value of 

𝜀𝑖 is zero. 

The variance of 𝛽̂𝑀𝑜𝑅 can be shown to be 1 𝑛2⁄ ∑𝜎2𝑋𝑖
2𝜃 𝑋𝑖

2⁄ , which is equal to the minimum 

variance of V(𝛽̂𝑊𝐿𝑆) when 𝜃 = 1.0. 

V(𝛽̂𝑀𝑜𝑅) = E [(𝛽̂𝑀𝑜𝑅 − 𝛽)
2
] 

V(𝛽̂𝑀𝑜𝑅) =
1

𝑛2
∑

𝜎2𝑋𝑖
2𝜃

𝑋𝑖
2  

When 𝜃 = 0, 

V(𝛽̂𝑀𝑜𝑅) =
1

𝑛2
∑

𝜎2𝑋𝑖
2𝜃

𝑋𝑖
2 =

1

𝑛2
∑

𝜎2

𝑋𝑖
2 

When 𝜃 = 0.5, 

V(𝛽̂𝑀𝑜𝑅) =
1

𝑛2
∑

𝜎2𝑋𝑖
2𝜃

𝑋𝑖
2 =

1

𝑛2
∑

𝜎2𝑋𝑖

𝑋𝑖
2 =

1

𝑛2
∑

𝜎2

𝑋𝑖
 

When 𝜃 = 1.0, 

V(𝛽̂𝑀𝑜𝑅) =
1

𝑛2
∑

𝜎2𝑋𝑖
2𝜃

𝑋𝑖
2 =

1

𝑛2
∑

𝜎2𝑋𝑖
2

𝑋𝑖
2 =

∑𝜎2

𝑛2
=

𝑛𝜎2

𝑛2
=

𝜎2

𝑛
= V(𝛽̂𝑊𝐿𝑆) 

Therefore, when 𝜃 = 1.0, V(𝛽̂𝑀𝑜𝑅) is equal to V(𝛽̂𝑊𝐿𝑆), which proves that 𝛽̂𝑀𝑜𝑅 is BLUE 

with 𝜃 being 1.0. 

Appendix 3.3 

This appendix presents the R-code to graphically assess the value of 𝜃. We assume that the 

target variable for imputation is stored in the first column of the data and the auxiliary variable is 

stored in the second column of the data. Also, the name of the dataset is “data”. For the values of 
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min and max, specify appropriate numbers between 0 and 1. 

attach(data) 

min<-0.001 

max<-0.999 

plot(data[,2],data[,1], 

xlim=c(as.numeric(quantile(data[,2],min,na.rm=TRUE)), 

as.numeric(quantile(data[,2],max,na.rm=TRUE))), 

ylim=c(as.numeric(quantile(data[,1],min,na.rm=TRUE)), 

as.numeric(quantile(data[,1],max,na.rm=TRUE))), 

) 

 

Appendix 3.4 

This appendix presents the R-code to numerically assess the value of 𝜃. We assume that the 

target variable for imputation is stored in the first column of the data and the auxiliary variable is 

stored in the second column of the data. Also, the name of the dataset is “data”. 

attach(data); matdata<-matrix(NA,nrow(data),4); require(lmtest) 

for(i in 1:nrow(data)){ 

  if (data[i,2]<as.numeric(quantile(data[,2])[2])){ 

  matdata[i,1]<-data[i,1] 

  } 

  else if (data[i,2]<as.numeric(quantile(data[,2])[3])){ 

  matdata[i,2]<-data[i,1] 

  } 

  else if (data[i,2]<as.numeric(quantile(data[,2])[4])){ 

  matdata[i,3]<-data[i,1] 

  } 

  else{matdata[i,4]<-data[i,1] 

  } 

} 

data2<-data.frame(matdata) 

 s1<-sd(data2[,1],na.rm=TRUE); s2<-sd(data2[,2],na.rm=TRUE) 

 s3<-sd(data2[,3],na.rm=TRUE); r1<-(s2-s1)/s1; r2<-(s3-s2)/s2 

 estimation1<-(r1+r2)/2*exp(1)/exp(sd(log(data[,2]))) 

pvalue<-as.numeric(bptest(data[,1]~data[,2])$p.value) 

if (pvalue>0.05){ 

  estimation2<-0.0 

  }else{ 

    estimation2<-estimation1 

  } 

estimation2 
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4 Comparison of MCMC and Non-MCMC Multiple Imputation Algorithms 

This chapter derived from Takahashi (2017d), a peer-reviewed article in the Data Science 

Journal, which is sponsored by CODATA (Committee on Data for Science and Technology), an 

interdisciplinary scientific committee of the International Council for Science (ICSU). The Data 

Science Journal is indexed in Scopus by Elsevier as of April 2017. The author would like to thank 

Ubiquity Press for permission to use “Statistical inference in missing data by MCMC and non-

MCMC multiple imputation algorithms: Assessing the effects of between-imputation iterations” 

(Data Science Journal, in press). 

4.1 Introduction 

Generally, it is quite difficult to obtain complete data in social surveys (King et al., 2001, p.49). 

Consequently, available data are not only inefficient due to the reduced sample size, but also 

biased due to the difference between respondents and non-respondents, thus making statistical 

inference invalid. Since Rubin (1987), multiple imputation has been known to be the standard 

method of handling missing data (Graham, 2009; Baraldi and Enders, 2010; Carpenter and 

Kenward, 2013; Raghunathan, 2016). 

While the theoretical concept of multiple imputation has been around for decades, the 

implementation is difficult because making a random draw from the posterior distribution is a 

complicated matter. Accordingly, there are several computational algorithms in software (Schafer, 

1997; Honaker and King, 2010; van Buuren, 2012). The most traditional algorithm is Data 

Augmentation (DA) followed by the other two new algorithms, Fully Conditional Specification 

(FCS) and Expectation-Maximization with Bootstrapping (EMB). Although an abundant 

literature exists on the comparisons between joint modeling (DA, EMB) and conditional modeling 

(FCS), no comparisons have been made about the relative superiority between the MCMC 

algorithms (DA, FCS) and the non-MCMC algorithm (EMB), where MCMC stands for Markov 

chain Monte Carlo. This study assesses the effects of between-imputation iterations on the 

performance of the three multiple imputation algorithms, using Monte Carlo experiments. 
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By way of organization, Section 4.2 introduces the notations in this chapter. Section 4.3 gives 

a motivating example of missing data analysis in social sciences. Section 4.4 presents the 

assumptions of imputation methods. Section 4.5 shows the traditional methods of handling 

missing data. Section 4.6 introduces the three multiple imputation algorithms. Section 4.7 surveys 

the literature on multiple imputation. Sections 4.8 gives the results of the Monte Carlo 

experiments, showing the impact of between-imputation iterations on multiple imputation. 

Section 4.9 concludes with the findings and the limitations in the current research. 

4.2 Notations 

𝐃  is 𝑛 × 𝑝  data, where 𝑛  is the sample size and 𝑝  is the number of variables. The 

distribution of 𝐃 is multivariate-normal with mean vector 𝛍 and variance-covariance matrix 𝚺, 

i.e., 𝑫~𝑁𝑝(𝛍, 𝚺), where all of the variables are continuous. Let 𝑖 refer to an observation index 

(𝑖 = 1,… , 𝑛). Let 𝑗 refer to a variable index (𝑗 = 1,… , 𝑝). Let 𝐃 = {𝐘𝟏, … , 𝐘𝐩}, where 𝐘𝐣 is the 

𝑗 -th column in 𝐃  and 𝐘−𝐣  is the complement of 𝐘𝐣 , i.e., all columns in 𝐃  except 𝐘𝐣 . 

Depending on the model specification, 𝐘−𝐣 are denoted 𝐗𝟏, … , 𝐗𝐩−𝟏, where the 𝑝-th variable is 

𝐘. Also, let 𝐘𝐨𝐛𝐬 be observed data and 𝐘𝐦𝐢𝐬 be missing data: 𝐃 = {𝐘𝐨𝐛𝐬, 𝐘𝐦𝐢𝐬}. 

Let 𝐑 be a response indicator matrix that has the same dimension as 𝐃. Whenever 𝐃 is 

observed, 𝐑 = 1; otherwise, 𝐑 = 0. Note, however, that italicized R refers to the R statistical 

environment. In the multiple imputation context, 𝑀 refers to the number of imputations and 𝑇 

refers to the number of between-imputation iterations. In general, 𝜃 is an unknown parameter. 

4.3 Motivating Example: Missing Economic Data 

Social scientists have long debated the determinants of economic development across countries 

(Barro, 1997; Feng, 2003; Acemoglu et al., 2005). Using the data from the Central Intelligence 

Agency (CIA, 2016) and Freedom House (2016), we may estimate a multiple regression model, 

in which the dependent variable is GDP per capita and the independent variables include social, 

economic, and political variables. The problem is that the data are incomplete (Table 4.1), where 

the median missing rate is 22.4% and the total missing rate is 62.3%. 
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Table 4.2 presents multiple regression models; however, the conclusions are susceptible to how 

we deal with missing data. The coefficients for central bank and public debt are statistically 

significant at the 5% error level using incomplete data, while they are not significant using 

multiply-imputed data. On the other hand, the coefficients for education and military are not 

significant using incomplete data, while they are significant using multiply-imputed data. 

Therefore, the issue of missing data is of grave concern in applied empirical research. 

Variables Missing Rates 

GDP per capita (purchasing power parity) 0.0% 

Freedom House index 15.4% 

Central bank discount rate 32.9% 

Life expectancy at birth 2.6% 

Unemployment rate 10.5% 

Distribution of family income: Gini index 37.3% 

Public debt 22.4% 

Education expenditures 24.6% 

Taxes and other revenues 6.1% 

Military expenditures 43.0% 

Table 4.1: Variables and Missing Rates 

Data sources: CIA (2016) and Freedom House (2016) 

 

 Incomplete Data   Multiply-Imputed Data 

Variables Coef.  Std. Err.   Coef.  Std. Err. 

         

Intercept -7.323  3.953   -11.545 * 3.495 

Freedom -0.321 * 0.127   -0.362 * 0.127 

Central Bank -0.118 * 0.041   -0.107  0.049 

Life Expectancy 3.922 * 0.794   4.908 * 0.655 

Unemployment -0.205 * 0.087   -0.214 * 0.070 

Gini 0.114  0.253   -0.018  0.363 

Public Debt -0.198 * 0.092   -0.002  0.093 

Education 0.035  0.164   -0.488 * 0.154 

Tax 0.357 * 0.174   0.471 * 0.151 

Military 0.123  0.085   0.299 * 0.109 

         

Number of obs. 86   228 

Table 4.2: Multiple Regression Analyses on GDP Per Capita 

Note: *significant at the 5% error level. Coef. stands for coefficient. Std. Err. 

stands for standard error. All of the variables are log-transformed. 
 

4.4 Assumptions of Imputation Methods 

Missing data analyses always involve assumptions (Raghunathan, 2016, p.12). In order to judge 

the appropriateness of missing data methods, it is vital to comprehend the assumptions for the 
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methods. Imputation involves the following four assumptions. These assumptions will play 

important roles in simulation studies (Section 4.8). 

4.4.1 Assumptions of Missing Data Mechanisms 

There are three common assumptions of missing data mechanisms in the literature (King et al., 

2001, pp.50-51; Little and Rubin, 2002; Carpenter and Kenward, 2013, pp.10-21). The first 

assumption is Missing Completely At Random (MCAR), which is 𝑃𝑟(𝐑|𝐃) = 𝑃𝑟(𝐑) . If 

respondents are selected to answer their income values by throwing dice, this is an example of 

MCAR. The second assumption is Missing At Random (MAR), which is 𝑃𝑟(𝐑|𝐃) =

𝑃𝑟(𝐑|𝐘𝐨𝐛𝐬). If older respondents are more likely to refuse to answer their income values and if 

the ages of the respondents are available in the data, this is an example of MAR. The third 

assumption is Not Missing At Random (NMAR), which is 𝑃𝑟(𝐑|𝐃) ≠ 𝑃𝑟(𝐑|𝐘𝐨𝐛𝐬) . If 

respondents with higher values of incomes are more likely to refuse to answer their income values 

and if the other variables in the data cannot be used to predict which respondents have high 

amounts of income, this is an example of NMAR. 

4.4.2 Assumption of Ignorability 

To be strict, the missing data mechanism is ignorable if both of the following conditions are 

satisfied: (1) The MAR condition; and (2) the distinctness condition, which stipulates that the 

parameters in the missing data mechanism are independent of the parameters in the data model 

(Schafer, 1997, p.11). 

However, the MAR condition is said to be more relevant in real data applications (Allison, 

2002, p.5; van Buuren, 2012, p.33). Thus, for all practical purposes, NMAR is Non-Ignorable 

(NI). The current study assumes that the missing data mechanism is MAR and thus ignorable. 

4.4.3 Assumption of Proper Imputation 

Imputation is said to be Bayesianly proper if imputed values are independent realizations of 
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𝑃𝑟(𝐘𝐦𝐢𝐬|𝐘𝐨𝐛𝐬), which means that successive iterates of 𝐘𝐦𝐢𝐬 cannot be used because of the 

correlations between them (Schafer, 1997, pp.105-106). Between-imputation convergence relies 

on a number of factors, but the fractions of missing information are one of the most influential 

factors (Schafer, 1997, p.84; van Buuren, 2012, p.113). 

van Buuren (2012, p.39) introduces a slightly simplified version of proper imputation, which 

he calls confidence proper. Let 𝜃̅ be the multiple imputation estimate, 𝜃 be the estimate based 

on the hypothetically complete data, 𝑉̅ be the estimate of the sampling variance of the estimate 

based on the hypothetically complete data, and 𝑉̂ be the sampling variance estimate based on 

the hypothetically complete data. An imputation procedure is said to be confidence proper if all 

of the following three conditions are satisfied: (1) 𝜃̅ is equal to 𝜃 when averaged over the 

response indicators sampled under the assumed response model; (2) 𝑉̅ is equal to 𝑉̂  when 

averaged over the response indicators sampled under the assumed response model; and (3) the 

extra inferential uncertainty due to missingness is correctly reflected. In order to check whether 

an imputation method is confidence proper, van Buuren (2012, p.47) recommends to use bias, 

coverage, and confidence interval length as the evaluation criteria (See Section 4.8.2). 

4.4.4 Assumption of Congeniality 

Congeniality means that the imputation model is equal to the substantive analysis model. It is 

widely known that the imputation model can be larger than the substantive analysis model, but 

the imputation model cannot be smaller than the substantive analysis model (Enders, 2010, 

pp.227-229; Carpenter and Kenward, 2013, pp.64-65; Raghunathan, 2016, pp.175-177). 

4.5 Traditional Methods of Handling Missing Data 

This section introduces listwise deletion, deterministic single imputation, and stochastic single 

imputation, which are used as baseline methods for comparisons in Section 8. 

Listwise deletion (LD), also known as complete-case analysis, throws away any rows that have 

at least one missing value (Allison, 2002, pp.6-8; Baraldi and Enders, 2010, pp.10). Although it 
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is simple and convenient, LD is less efficient due to the reduced sample size and may be biased 

if the assumption of MCAR does not hold (Schafer, 1997, p.23). 

Deterministic single imputation (D-SI) replaces a missing value with a reasonable guess. The 

most straightforward version calculates predicted scores for missing values based on a regression 

model (Allison, 2002, p.11; Baraldi and Enders, 2010, p.12). If the goal of analysis is to estimate 

the mean of an incomplete variable, D-SI produces an unbiased estimate under the assumptions 

of MCAR and MAR. However, D-SI tends to underestimate the variation in imputed data (de 

Waal et al., 2011, p.231). D-SI is available as R-function norm.predict in MICE (van Buuren, 

2012, p.57). 

Stochastic single imputation (S-SI) also utilizes a regression model to predict missing values, 

but it adds to imputed values random components drawn from the residual distribution (Baraldi 

and Enders, 2010, p.13). S-SI is likely to recover the variation of an incomplete variable under 

the assumptions of MCAR and MAR; thus, compensating for the disadvantage of D-SI (de Waal 

et al., 2011, p.231). S-SI is available as R-function norm.nob in MICE (van Buuren, 2012, p.57). 

However, both D-SI and S-SI tend to underestimate the standard error in imputed data because 

imputed values are treated as if they were real (Raghunathan, 2016, p.77). 

4.6 Competing Multiple Imputation Algorithms 

Multiple imputation was made widely known by Rubin (1987) and concise history can be found 

in Scheuren (2005). In theory, multiple imputation replaces a missing value by 𝑀 simulated 

values (𝑀 > 1) independently and randomly drawn from the distribution of missing data. The 

variation among 𝑀 simulated values reflects uncertainty about missing data; thus, making the 

standard error valid. In practice, missing data are by definition unobserved; therefore, the 

distribution of missing data is also unobserved. Instead, under the assumption of MAR (or 

MCAR), multiple imputation constructs the posterior predictive distribution of missing data, 

conditional on observed data. Then, a random draw is independently made from this posterior 

distribution (Rubin, 1987, p.75; King et al., 2001, pp.53-54; Carpenter and Kenward, 2013, pp.38-
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39). 

However, using the analytical methods, it is not easy to randomly draw sufficient statistics from 

the posterior distribution (Allison, 2002, pp.33; Honaker and King, 2010, pp.564). In order to 

solve this problem, three computational algorithms have been proposed in the literature. 

4.6.1 Data Augmentation 

The traditional algorithm of multiple imputation is the Data Augmentation (DA) algorithm, 

which is a Markov chain Monte Carlo (MCMC) technique (Takahashi and Ito, 2014, pp.46-48). 

DA improves parameter estimates by repeated substitution conditional on the preceding value, 

forming a stochastic process called a Markov chain (Gill, 2008, p.379). 

The DA algorithm works as follows (Schafer, 1997, p.72). Equation (4.1) is the imputation step 

that generates imputed values from the predictive distribution of missing values, given the 

observed values and the parameter values at iteration 𝑡. Equation (4.2) is the posterior step that 

generates parameter values from the posterior distribution, given the observed values and the 

imputed values at iteration 𝑡 + 1. 

𝐘𝐦𝐢𝐬
(𝐭+𝟏)

~𝑃𝑟(𝐘𝐦𝐢𝐬|𝐘𝐨𝐛𝐬, 𝜃
(𝑡)) (4.1) 

 

𝜃(𝑡+1)~𝑃𝑟 (𝜃|𝐘𝐨𝐛𝐬, 𝐘𝐦𝐢𝐬
(𝐭+𝟏)

) (4.2) 

 

These two steps are repeated 𝑇  times until convergence is attained. The convergence of 

MCMC is stochastic because it converges to probability distributions (Schafer, 1997, p.80). 

Therefore, it is hard to judge the convergence in MCMC. 

There are two ways of generating multiple imputations by DA (Schafer, 1997, p.139; Enders, 

2010, pp.211-212). In the first method, a single chain is run for 𝑀 × 𝑇 iterations, taking every t-

th iteration of 𝑌𝑚𝑖𝑠. In the second method, 𝑀 parallel chains of length 𝑇 are run, and the final 

values of 𝑌𝑚𝑖𝑠 from 𝑀 chains are taken as the imputations. The current study adopts the second 

method. 
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The software using this algorithm is R-Package NORM2, which was originally developed by 

Schafer (1997) and is currently maintained by Schafer (2016). 

4.6.2 Fully Conditional Specification 

An alternative algorithm to DA is the Fully Conditional Specification (FCS) algorithm, which 

specifies the multivariate distribution by way of a series of conditional densities, through which 

missing values are imputed given the other variables (Takahashi and Ito, 2014, pp.50-53).  

The FCS algorithm works as follows (van Buuren and Groothuis-Oudshoorn, 2011, pp.6-7; van 

Buuren, 2012, p.110; Zhu and Raghunathan, 2015). Equation (4.3) draws the unknown parameters 

of the imputation model, given the observed values and the 𝑡-th imputations, where 𝐘−𝐣
(𝐭)

=

(𝐘𝟏
(𝐭), … , 𝐘𝐣−𝟏

(𝐭) , 𝐘𝐣+𝟏
(𝐭−𝟏)

, … , 𝐘𝐩
(𝐭−𝟏)

) , where tilde denotes a random draw. Equation (4.4) draws 

imputations, given the observed values, the 𝑡-th imputations, and the 𝑡-th parameter estimates. 

These two steps are repeated for 𝑗 = 1,… , 𝑝. 

𝜃̃𝑗
(𝑡)

~𝑃𝑟 (𝜃𝑗
(𝑡)

|𝐘𝐣,𝐨𝐛𝐬, 𝐘−𝐣
(𝐭)) (4.3) 

 

𝐘𝐣
(𝐭)~𝑃𝑟 (𝐘𝐣,𝐦𝐢𝐬|𝐘𝐣,𝐨𝐛𝐬, 𝐘−𝐣

(𝐭), 𝜃̃𝑗
(𝑡)

) (4.4) 

 

The entire process is repeated for 𝑡 = 1,… , 𝑇  until convergence is attained. FCS can be 

considered an MCMC method, because FCS is a Gibbs sampler under the compatible conditionals 

(van Buuren and Groothuis-Oudshoorn, 2011, p.6; van Buuren, 2012, p.109). This means that the 

convergence of FCS is stochastic. Therefore, it is hard to judge the convergence in FCS. 

The software using this algorithm is R-Package MICE (van Buuren and Groothuis-Oudshoorn, 

2011), which stands for Multivariate Imputation by Chained Equations and is currently 

maintained by van Buuren et al. (2015). The FCS algorithm is also known as Sequential 

Regression Multivariate Imputation (Raghunathan, 2016, p.76). 
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4.6.3 Expectation-Maximization with Bootstrapping 

Another emerging algorithm is the Expectation-Maximization with Bootstrapping (EMB) 

algorithm, which combines the Expectation-Maximization (EM) algorithm with the 

nonparametric bootstrap to create multiple imputation (Takahashi and Ito, 2014, pp.55-57). 

The EMB algorithm works as follows (Honaker and King, 2010, p.565; Honaker et al., 2011, 

p.4). Suppose that a random sample of size 𝑛 is drawn from a population, where some values 

are missing in the sample. Bootstrap resamples of size 𝑛 are randomly drawn from the sample 

data with replacement 𝑀  times (Horowitz, 2001, pp.3163-3165; Carsey and Harden, 2014, 

p.215). The variation among the M resamples represents uncertainty about estimation. The EM 

algorithm is applied to each of these M bootstrap resamples to refine M point estimates of 

parameter 𝜃. Equation (4.5) is the expectation step that calculates the Q-function by averaging 

the complete-data log-likelihood over the predictive distribution of missing data. Equation (4.6) 

is the maximization step that finds parameter values at iteration 𝑡 + 1 by maximizing the Q-

function. 

𝑄(𝜃|𝜃(𝑡)) = ∫ 𝑙(𝜃|𝐘)𝑃𝑟(𝐘𝐦𝐢𝐬|𝐘𝐨𝐛𝐬, 𝜃
(𝑡))𝑑𝐘𝐦𝐢𝐬 (4.5) 

 

𝜃(𝑡+1) = argmax
𝜃

𝑄(𝜃|𝜃(𝑡)) (4.6) 

 

These two steps are repeated until convergence is attained, where the converged value is a 

Maximum Likelihood Estimate (MLE) under well-behaved conditions (Schafer, 1997, pp.38-39; 

Do and Batzoglou, 2008). The convergence of EM is deterministic because it converges to a point 

in the parameter space (Schafer, 1997, p.80). Therefore, it is straightforward to judge the 

convergence in EM. The substitution of MLEs from bootstrap resamples is asymptotically equal 

to a sample from the posterior distribution (Little and Rubin, 2002, pp.216-217). 

The software using this algorithm is R-Package AMELIA II (Honaker et al., 2011), which was 

originally developed by King et al. (2001) and is currently maintained by Honaker et al. (2016). 
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4.6.4 Relationships among the Three Algorithms 

The three algorithms share certain characteristics with each other, but not exactly the same as 

summarized in Table 4.3. 

 Joint Modeling Conditional Modeling 

MCMC DA FCS 

Non-MCMC EMB  

Table 4.3: Relations among DA, EMB, and FCS 

 

DA and EMB are joint modeling while FCS is conditional modeling (Kropko et al., 2014). Joint 

modeling specifies a multivariate distribution of missing data while conditional modeling 

specifies a univariate distribution on a variable-by-variable basis (van Buuren, 2012, pp.105-108). 

Conditional modeling is more flexible and joint modeling is computationally more efficient (van 

Buuren, 2012, p.117; Kropko et al., 2014). 

DA and FCS are different versions of MCMC techniques. On the other hand, EMB is not an 

MCMC technique. It is said that DA and FCS require between-imputation iterations to be 

confidence proper (Schafer, 1997, p.106; van Buuren, 2012, p.113) while EMB does not need 

iterations to be confidence proper (Honaker and King, 2010, p.565). However, as is clear in 

Section 4.7, whether EMB is confidence proper when DA and FCS are improper, this is an open 

question that has not been tested in the literature. 

4.7 Comparative Studies on Multiple Imputation in the Literature 

Table 4.4 presents the literature that compared imputation methods. Nine studies compared 

multiple imputation with other missing data methods, such as listwise deletion, single imputation, 

and maximum likelihood. Among these nine studies, four studies focused on DA (Schafer and 

Graham, 2002; Abe and Iwasaki, 2007; Lee and Carlin, 2012; von Hippel, 2016), four studies on 

FCS (Donders et al., 2006; Stuart et al., 2009; Cheema, 2014; Deng et al., 2016), and one study 

on an unknown algorithm (Shara et al., 2015). 

Four studies investigated specialized situations for multiple imputation, such as small-sample 

degrees of freedom in DA (Barnard and Rubin, 1999), Likert-type data in DA (Leite and Beretvas, 
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2010), non-parametric multiple imputation (Cranmer and Gill, 2013), and variance estimators 

(Hughes et al., 2016). 

Authors 
MI 

Algorithms 
Sample Size 

Number of 

Variables 

Number of 

Imputations 

Number of 

Iterations 

Missing 

Rate 

Barnard and 

Rubin (1999) 
DA 10, 20, 30 2 3, 5, 10 Unknown 

10%, 20%, 

30% 

Horton and 

Lipsitz (2001) 
DA, FCS 10000 3 10 200 50% 

King et al. 

(2001) 
DA, EMis 500 5 10 1000 

17%, 22%, 

50% 

Schafer and 

Graham (2002) 
DA 50 2 20 Unknown 73% 

Donders et al. 

(2006) 
FCS 500 2 10 Unknown 40% 

Abe and 

Iwasaki (2007) 
DA 100 4 5 100 20%, 30% 

Horton and 

Kleinman 

(2007) 

DA, EMB, 

FCS 
133774 10 10 5 41% 

Stuart et al. 

(2009) 
FCS 9186 400 10 10 18% 

Lee and Carlin 

(2010) 
DA, FCS 1000 8 20 10 33% 

Leite and 

Beretvas 

(2010) 

DA 400 10 10 Unknown 
10%, 30%, 

50% 

Hardt, Herke, 

and Leonhart 

(2012) 

DA, EMB, 

FCS 
50, 100, 200 

3, 13, 23, 

43, 83 
20 Unknown 20%, 50% 

Lee and Carlin 

(2012) 
DA 1000 8 20 Unknown 

10%, 25%, 

50%, 75%, 

90% 

Cranmer and 

Gill (2013) 
EMB, MHD 500 5 Unknown NA 

20%, 50%, 

80% 

Cheema (2014) FCS 

10, 20, 50, 

100, 200, 500, 

1000, 2000, 

5000, 10000 

4 Unknown Unknown 

1%, 2%, 

5%, 10%,  

20% 

Kropko et al. 

(2014) 

DA, EMB, 

FCS 
1000 8 5 30 25% 

Shara et al. 

(2015) 
Unknown 2246 8 Unknown Unknown 

20%, 30%, 

40% 

Deng et al. 

(2016) 
FCS 100 200, 1000 10 20 40% 

von Hippel 

(2016) 
DA 25, 100 2 5 Unknown 50% 

Hughes, Sterne, 

and Tilling 

(2016) 

Unknown 100, 1000 5 50 Unknown 40%, 60% 

McNeish 

(2017) 
DA, FCS 

20, 50, 100,  

250 
4 5, 25, 100 Unknown 

10%, 20%, 

30%, 50% 

Table 4.4: Summary of the 20 Studies on Multiple Imputation 

Note: DA stands for Data Augmentation, EMis for Expectation-Maximization with Importance 

Sampling, FCS for Fully Conditional Specification, EMB for Expectation-Maximization with 

Bootstrapping, and MHD for Multiple Hot Deck. Unknown means that information is 

unavailable. NA means Not-Applicable. 
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Seven studies compared different multiple imputation algorithms (King et al., 2001; Horton 

and Lipsitz, 2002; Horton and Kleinman, 2007; Lee and Carlin, 2010; Hardt et al., 2012; Kropko 

et al., 2014; McNeish, 2017). The comparative perspective in most of the seven studies, except 

King et al. (2001), is based on the difference between joint modeling and conditional modeling. 

Thus, the perspective from MCMC vs. non-MCMC is generally lacking in the literature. 

Ten studies did not explicitly state the number of iterations 𝑇 . Furthermore, Horton and 

Kleinman (2007) used the default setting in software for 𝑇, and the information in Kropko et al. 

(2014) can be only found in their computer codes, not in the article. 

Thus, no studies in Table 4.4 have systematically investigated the effects of convergence on the 

three multiple imputation algorithms. 

4.8 Monte Carlo Simulation 

Section 4 introduced MAR, proper imputation, and congeniality as crucial assumptions. To 

make the assumptions of MAR and congeniality realistic, an inclusive analysis strategy is 

recommended in the literature (Enders, 2010, pp.16-17; Raghunathan, 2016, p.73), which 

contains any auxiliary variables that can increase the predictive power of the imputation model 

or any variables that may be related to the missing data mechanism. What complicates the matter, 

however, is that auxiliary variables themselves are often incomplete. This creates a dilemma in 

multiple imputation. Including many auxiliary variables makes it more likely for MAR and 

congeniality to be satisfied, but including many incomplete variables leads to a higher total 

missing rate, which further makes it more difficult for convergence in MCMC to be attained. 

When assumptions do not hold in statistical methods, analytical mathematics does not often 

provide answers about the properties of the methods (Mooney, 1997, p.1). Monte Carlo simulation 

converts the computer into an experimental laboratory, where the researcher can control various 

conditions in the environment to observe the outcomes (Carsey and Harden, 2014, p.4). Thus, 

Monte Carlo simulation is a powerful method of assessing the performance of statistical methods 

under various settings especially when assumptions are violated. 
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Abbreviations in this section are explained in Table 4.5, where MI stands for multiple 

imputation and SI for single imputation. 

Abbreviations Missing Data Methods 

CD Complete data without missing values 

LD Listwise deletion 

EMB MI by AMELIA II 

DA1 MI by NORM2 with no iterations 

DA2 MI by NORM2 with 2*EM iterations 

FCS1 MI by MICE with no iterations 

FCS2 MI by MICE with 2*EM iterations 

D-SI Deterministic SI by norm.predict in MICE 

S-SI Stochastic SI by norm.nob in MICE 

Table 4.5: Abbreviations and the Missing Data Methods 

4.8.1 Monte Carlo Simulation Designs 

The current study prepares two versions of simulation data, (1) theoretical and (2) realistic. 

Auxiliary variables 𝐗 are generated by R-Function mvrnorm. All of the computations are done 

in R 3.2.4. The computer used in the current study is HP Z440 Workstation (Windows 7 

Professional, processor: Intel Xeon CPU E5-1603 v3), with the processor speed of 2.80 GHz and 

the memory (RAM) of 32.0 GB under the 64 bit operating system. The number of Monte Carlo 

simulation runs is set to 1000. 

The first setting is theoretical. The number of observations is 1000, which is the 75th percentile 

in Table 4.4. The number of variables p is changed from 2, 3, 4, 5, 6, 7, 8, 9, to 10, which covers 

the 70th percentile in Table 4.4. Note that in another simulation run, not reported here, p was 

changed to 20, and the conclusions were similar. Auxiliary variables 𝑥𝑗 are multivariate-normal 

with the mean of 0 and the standard deviation of 1, i.e., 𝐗~𝑁𝑝−1(0, 1), where the number of 

auxiliary variables is 𝑝 − 1. The correlation among 𝑥𝑗 is randomly generated in R as follows: 

r<-matrix(runif(9^2,-1,1),ncol=9) and Cor<-cov2cor(r%*%t(r)). The 

generated correlation matrix is shown in equation (4.7). The p-th variable 𝑦𝑖  is a linear 

combination of 𝑥𝑗 such that 𝑦𝑖 = 𝛽0 + 𝛽1𝑥1𝑖 + ⋯+ 𝛽𝑝−1𝑥𝑝−1𝑖 + 𝜀𝑖, where 𝛽𝑗~𝑈(−2.0, 2.0) 

and 𝜀𝑖~𝑁(0, 𝜎). Note that 𝛽𝑗 includes 𝛽0 and 𝜎~𝑈(0.5, 2.0). 
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𝐶𝑜𝑟1 =

[
 
 
 
 
 
 
 
 

1.000 −0.231  0.335 0.401 −0.276 0.247 −0.120 0.327 −0.068
−0.231 1.000 0.074 −0.761 0.041 −0.623 −0.083 −0.432 −0.183
 0.335 0.074 1.000 0.183 −0.323 0.254 −0.458 0.434 −0.801
0.401 −0.761 0.183 1.000 0.007 0.639 −0.094 0.676 0.169

−0.276 0.041 −0.323 0.007 1.000 −0.547 0.357 −0.025 0.081
0.247 −0.623 0.254 0.639 −0.547 1.000 0.024 0.204 0.023

 −0.120 −0.083 −0.458 −0.094 0.357 0.024 1.000 −0.486 0.373
 0.327 −0.432 0.434 0.676  −0.025 0.204 −0.486 1.000 −0.153

−0.068 −0.183 −0.801 0.169 0.081 0.023 0.373  −0.153 1.000]
 
 
 
 
 
 
 
 

 (4.7) 

 

The second setting is realistic. The number of observations is 228, which is the full sample size 

of the real data in Table 4.2. The number of variables p is again changed from 2, 3, 4, 5, 6, 7, 8, 

9, to 10. Auxiliary variables 𝑥𝑗 are multivariate-normal with the means and standard deviations 

based on the empirical data (log-transformed), where 𝑥𝑗  consist of the nine independent 

variables in Table 4.2 (CIA, 2016; Freedom House, 2016). Furthermore, the correlation matrix is 

based on the empirical data (log-transformed) as in equation (4.8). The p-th variable 𝑦𝑖 is a linear 

combination of 𝑥𝑗 such that 𝑦𝑖 = 𝛽0 + 𝛽1𝑥1𝑖 + ⋯+ 𝛽𝑝−1𝑥𝑝−1𝑖 + 𝜀𝑖, where 𝛽𝑗 (including 𝛽0) 

reflects the coefficients in multiple regression models using the empirical data and 

𝜀𝑖~𝑁(0, 𝜎𝑟𝑒𝑠𝑖𝑑), where 𝜎𝑟𝑒𝑠𝑖𝑑 is the residual standard deviation from the empirical regression 

model. 

𝐶𝑜𝑟2 =

[
 
 
 
 
 
 
 
 

1.000 0.646  −0.500 −0.007 0.376 −0.354 −0.378 −0.534 0.312
0.646 1.000 −0.531  0.021 0.371 −0.305 −0.150  −0.427 0.049

 −0.500 −0.531 1.000 −0.474 −0.512 0.278 0.092 0.280 −0.086
−0.007 0.021 −0.474 1.000 0.205 0.079 0.014 0.086 0.161

0.376 0.371 −0.512 0.205 1.000  −0.204 −0.089 −0.370 0.220
−0.354 −0.305 0.278 0.079 −0.204 1.000 0.106 0.212 −0.180
 −0.378 −0.150 0.092 0.014 −0.089 0.106 1.000 0.578 −0.128
 −0.534 −0.427 0.280 0.086  −0.370 0.212 0.578 1.000 −0.134

0.312 0.049 −0.086 0.161 0.220 −0.180 −0.128  −0.134 1.000]
 
 
 
 
 
 
 
 

 (4.8) 

 

In both settings, 𝑥𝑗 are incomplete variables for imputation, 𝑦𝑖 is completely observed in all 

of the situations, and 𝑢𝑗𝑖 are a set of 𝑝 − 1 continuous uniform random numbers ranging from 

0 to 1 for the missing data mechanism. As was introduced in Section 4.4.1, under the assumption 

of MAR, the missingness of 𝑥𝑗𝑖  depends on the values of 𝑦𝑖  and 𝑢𝑗𝑖 , i.e., 𝑥𝑗𝑖  is missing if 

𝑦𝑖 < median(𝑦𝑖) and 𝑢𝑗𝑖 < 0.5, and 𝑥𝑗𝑖 is missing if 𝑦𝑖 > median(𝑦𝑖) and 𝑢𝑗𝑖 > 0.9. This 

creates approximately 30% missing values in each 𝑥𝑗 . This is realistic, because the average 

missing rates of income and earnings are 30% on a variable basis in the National Health Interview 
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Survey (Schenker et al., 2006, p.925) and the median missing rate is 30.0% in Table 4.4. Note 

that the above setting may be translated into the following statement. Variable 𝑦𝑖 is age and 𝑥1𝑖 

is income. The missingness of income depends on age and some random components. Income is 

missing if age is less than the median of age and uniform random numbers are less than 0.5. Also, 

income is missing if age is larger than the median of age and uniform random numbers are larger 

than 0.9. 

Although the literature (Graham et al., 2007; Bodner, 2008; Takahashi and Ito, 2014, pp.68-71) 

recommends to use relatively large 𝑀, the simulation studies in Table 4.4 use relatively small 𝑀. 

This is due to the computational burden of Monte Carlo simulation for multiple imputation. 

Considering this practical issue, the current study sets M to 20, which is the 75th percentile in 

Table 4.4. 

As for 𝑇, there is no consensus in the literature (Table 4.4). There are no clear-cut rules for 

determining whether MCMC algorithms attained convergence (Schafer, 1997, p.119; King et al., 

2001, p.59; van Buuren and Groothuis-Oudshoorn, 2011, p.37). Though not perfect, doubling the 

number of EM iterations is a rule of thumb for a conservative estimate about convergence speed 

for MCMC (Schafer and Olsen, 1998; Enders, 2010, p.204). Since it is not possible to check 

convergence in each of the 1000 simulation runs, the current study relies on the rule of thumb to 

set 𝑇. 

4.8.2 Criteria for Judging Simulation Results 

The estimand in all of the simulation runs is 𝛽1 in 𝑦𝑖 = 𝛽0 + 𝛽1𝑥1𝑖 + ⋯+ 𝛽𝑝−1𝑥𝑝−1𝑖 + 𝜀𝑖. 

The purpose of multiple imputation is to find an unbiased estimate of the population parameter 

that is confidence valid (van Buuren, 2012, pp.35-36).  

Unbiasedness can be assessed by equation (4.9), because an estimator 𝜃  is an unbiased 

estimator of 𝜃 if the expected value of 𝜃 is equal to the true 𝜃 (Mooney, 1997, p.59; Gujarati, 

2003, pp.899). 
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Bias(𝜃) = 𝐸(𝜃) − 𝜃 (4.9) 

 

Unbiasedness and efficiency can be simultaneously assessed by the Root Mean Square Error 

(RMSE), defined as equation (4.10). The RMSE measures the spread around the true value of the 

parameter, placing slightly more emphasis on efficiency than bias (Gujarati, 2003, p.901; Carsey 

and Harden, 2014, pp.88-89). 

RMSE(𝜃̂) = √𝐸(𝜃 − 𝜃)
2
  (4.10) 

 

Confidence validity can be assessed by the coverage probability of the nominal 95% confidence 

interval (CI), which ‘is the proportion of simulated samples for which the estimated confidence 

interval includes the true parameter’ (Carsey and Harden, 2014, p.93). The formula of the standard 

error for proportions is equation (4.11), where 𝜋  is the proportion and 𝑠  is the number of 

simulation runs. 

SE(𝜋) = √
𝜋(1 − 𝜋)

𝑠
 (4.11) 

 

The standard error of the 95% CI coverage over 1000 iterations is √0.95 × 0.05 1000⁄ ≈

0.007 which is 0.7%. Therefore, with 95% confidence, the estimated coverage probability should 

be between 93.6% and 96.4% (Abe and Iwasaki, 2007, p.10; Lee and Carlin, 2010, p.627; Carsey 

and Harden, 2014, pp.94-95; Hughes et al., 2016). 

4.8.3 Results of the Simulation: Theoretical Case 

This section presents the results of the Monte Carlo simulation for the theoretical case, where 

the correlation matrix and the regression coefficients are randomly generated. 

Table 4.6 shows the Bias and RMSE values for the regression coefficient 𝛽1. The Bias and 

RMSE values for listwise deletion and single imputation methods indicate that these methods are 

not recommended at all. All of the Bias and RMSE values from EMB, DA1, DA2, and FCS2 are 
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almost identical, showing that they are generally unbiased. However, FCS1 is rather biased, quite 

similar to S-SI. Therefore, when between-imputation iterations are ignored, there are no 

discernible effects on bias and efficiency in EMB and DA, but FCS may suffer from some bias. 

 

Table 4.7 gives the coverage probability of the 95% CI for 𝛽1. The CIs for listwise deletion 

and single imputation methods are not confidence valid. When the number of auxiliary variables 

is small (and hence the overall missing rate is small), the between-imputation iterations may be 

ignored, where all of the multiple imputation CIs are confidence valid. However, as the number 

of auxiliary variables becomes large, DA1 and FCS1 drift away from the confidence validity. 

EMB, DA2, and FCS2 are confidence valid regardless of the number of variables and the missing 

 Number of Variables 

2 3 4 5 6 7 8 9 10 

           

CD 
Bias 0.001 0.003 0.001 0.002 0.001 0.001 0.001 0.002 0.001 

RMSE 0.040 0.047 0.038 0.039 0.058 0.026 0.046 0.039 0.047 

           

LD 
Bias 0.032 0.135 0.105 0.104 0.332 0.085 0.129 0.210 0.116 

RMSE 0.059 0.153 0.122 0.121 0.349 0.103 0.160 0.228 0.155 

           

EMB 
Bias 0.000 0.004 0.002 0.000 0.005 0.001 0.005 0.005 0.002 

RMSE 0.046 0.053 0.050 0.051 0.075 0.041 0.069 0.059 0.072 

           

DA1 
Bias 0.001 0.002 0.003 0.001 0.001 0.000 0.003 0.003 0.002 

RMSE 0.046 0.053 0.050 0.051 0.074 0.041 0.069 0.058 0.072 

           

DA2 
Bias 0.002 0.001 0.005 0.002 0.001 0.000 0.001 0.003 0.000 

RMSE 0.046 0.053 0.050 0.051 0.074 0.041 0.069 0.058 0.072 

           

FCS1 
Bias 0.002 0.001 0.082 0.040 0.090 0.047 0.093 0.027 0.233 

RMSE 0.047 0.053 0.097 0.062 0.116 0.065 0.109 0.052 0.239 

           

FCS2 
Bias 0.001 0.002 0.004 0.002 0.001 0.000 0.001 0.002 0.001 

RMSE 0.046 0.053 0.050 0.051 0.075 0.041 0.069 0.058 0.071 

           

D-SI 
Bias 0.186 0.242 0.174 0.093 0.187 0.098 0.231 0.070 0.163 

RMSE 0.192 0.248 0.182 0.110 0.207 0.109 0.248 0.099 0.189 

           

S-SI 
Bias 0.002 0.000 0.081 0.038 0.090 0.047 0.091 0.029 0.230 

RMSE 0.050 0.057 0.102 0.066 0.124 0.076 0.119 0.062 0.241 

           

Table 4.6: Bias and RMSE (Theoretical Data) 

Note: Biased results are in boldface, i.e., Bias > 0.010. 
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rate. This shows that EMB is confidence proper even if it does not iterate. This is an important 

finding in the current study. 

 Number of Variables 

2 3 4 5 6 7 8 9 10 

CD 95.3 94.9 94.2 94.0 96.0 96.0 95.3 94.9 94.6 

LD 88.5 47.9 54.6 56.7 10.8 65.1 69.2 32.1 78.1 

EMB 95.0 95.1 94.2 95.5 94.9 94.4 94.3 94.1 95.0 

DA1 94.6 94.9 93.2 93.1 94.1 91.8 92.9 92.4 92.9 

DA2 94.3 95.8 95.1 94.1 94.8 94.3 94.2 93.2 94.9 

FCS1 94.2 95.0 75.0 91.6 84.4 95.5 84.5 96.8 6.8 

FCS2 94.7 95.6 94.4 93.9 95.4 94.5 94.2 95.0 95.0 

D-SI 0.8 0.2 2.2 37.8 22.2 16.9 8.3 51.0 22.5 

S-SI 88.9 89.6 47.8 75.0 62.3 64.4 48.9 76.0 3.7 

Table 4.7: Coverage of the 95% CI (Theoretical Data) 

Note: Confidence invalid results are in boldface, i.e., outside of 93.6 and 96.4. 

 

Table 4.8 shows the CI lengths. The CI length by listwise deletion is generally too long, 

reflecting inefficiency due to the reduced sample size. The CI lengths by single imputation 

methods are ‘correct’ in the sense that they are quite similar to those of complete data analysis; 

however, this means that single imputation methods ignore estimation uncertainty associated with 

imputation. This is the cause of confidence invalidity of single imputation methods in Table 4.7. 

The CI length by DA1 is too short and the CI length by FCS1 is too long. The CI lengths by EMB, 

DA2, and FCS2 are essentially equal, reflecting the correct level of estimation uncertainty 

associated with imputation. 

 Number of Variables 

2 3 4 5 6 7 8 9 10 

CD 0.157 0.184 0.144 0.148 0.236 0.102 0.184 0.151 0.180 

LD 0.189 0.259 0.226 0.235 0.384 0.213 0.358 0.339 0.390 

EMB 0.178 0.209 0.196 0.200 0.301 0.160 0.275 0.229 0.281 

DA1 0.176 0.207 0.187 0.192 0.293 0.145 0.256 0.208 0.253 

DA2 0.177 0.208 0.194 0.198 0.298 0.158 0.271 0.223 0.274 

FCS1 0.178 0.209 0.237 0.211 0.324 0.248 0.306 0.223 0.299 

FCS2 0.178 0.209 0.197 0.201 0.302 0.161 0.275 0.228 0.281 

D-SI 0.143 0.174 0.133 0.149 0.244 0.103 0.205 0.150 0.188 

S-SI 0.157 0.184 0.161 0.155 0.238 0.145 0.188 0.149 0.186 

Table 4.8: Lengths of the 95% CI (Theoretical Data) 

 

Table 4.9 displays the computational time required to generate multiple imputations. When the 

number of auxiliary variables is small (and hence the overall missing rate is small), DA2 is fastest 
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among the three confidence proper multiple imputation algorithms. On the other hand, as the 

number of auxiliary variables becomes large, EMB becomes fastest. As is known in the literature 

(van Buuren, 2012, p.117; Kropko et al., 2014), FCS2 is at least 5 times slower and can be more 

than 50 times slower than EMB and DA2. However, the difference in computational time is not 

substantial, given that all of the computations can be done within a few minutes. 

 Number of Variables 

2 3 4 5 6 7 8 9 10 

EMB 0.46 0.53 0.53 0.59 0.71 0.78 0.97 1.27 1.69 

DA2 0.10 0.16 0.29 0.42 0.55 1.09 1.39 2.22 3.63 

FCS2 2.47 5.98 14.48 21.33 25.40 54.71 59.14 85.69 133.17 

Table 4.9: Computational Time (Theoretical Data) 

Note: Reported values are the time in seconds to perform multiple imputation, which is 

averaged over 1,000 simulation runs. The fastest results are in boldface. 

4.8.4 Results of the Simulation: Realistic Case 

This section presents the results of the Monte Carlo simulation for the realistic case, where the 

correlation matrix and the regression coefficients are based on the real data (CIA, 2016; Freedom 

House, 2016). The results in this section reinforce the findings in Section 8.3.1. 

Table 4.10 shows the Bias and RMSE values for the regression coefficient 𝛽1. The overall 

conclusions are similar to Table 4.6. When between-imputation iterations are ignored, there are 

no discernible effects on bias and efficiency in EMB and DA, but FCS may occasionally suffer 

from small bias. 

Table 4.11 gives the coverage probability of the 95% CI for 𝛽1. The overall conclusions are 

similar to Table 4.7, except that DA1 is confidence invalid even when 𝑝 = 3. This implies that 

we cannot ignore between-imputation iterations in MCMC-based approaches even when the 

number of variables is small. On the other hand, EMB is confidence valid and we can safely 

ignore between-imputation iterations in EMB. Again, this is an important finding in the current 

study. 
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 Number of Variables 

2 3 4 5 6 7 8 9 10 

           

CD 
Bias 0.003 0.002 0.002 0.002 0.001 0.002 0.000 0.002 0.002 

RMSE 0.074 0.086 0.068 0.067 0.066 0.065 0.070 0.069 0.075 

           

LD 
Bias 0.034 0.047 0.037 0.054 0.082 0.099 0.083 0.072 0.085 

RMSE 0.095 0.128 0.104 0.118 0.141 0.154 0.157 0.159 0.188 

           

EMB 
Bias 0.001 0.002 0.002 0.005 0.001 0.000 0.000 0.002 0.006 

RMSE 0.084 0.113 0.091 0.090 0.089 0.092 0.102 0.099 0.110 

           

DA1 
Bias 0.006 0.001 0.003 0.003 0.001 0.001 0.001 0.001 0.002 

RMSE 0.084 0.112 0.090 0.089 0.087 0.091 0.100 0.096 0.105 

           

DA2 
Bias 0.009 0.000 0.002 0.004 0.002 0.004 0.000 0.001 0.001 

RMSE 0.084 0.111 0.089 0.088 0.086 0.090 0.098 0.094 0.102 

           

FCS1 
Bias 0.007 0.013 0.006 0.005 0.002 0.008 0.006 0.012 0.000 

RMSE 0.084 0.106 0.081 0.081 0.080 0.081 0.086 0.083 0.088 

           

FCS2 
Bias 0.007 0.001 0.002 0.002 0.003 0.005 0.002 0.003 0.005 

RMSE 0.084 0.112 0.088 0.088 0.086 0.090 0.097 0.093 0.100 

           

D-SI 
Bias 0.188 0.075 0.011 0.035 0.037 0.047 0.023 0.034 0.059 

RMSE 0.207 0.163 0.115 0.118 0.118 0.123 0.130 0.127 0.151 

           

S-SI 
Bias 0.005 0.014 0.007 0.006 0.002 0.006 0.005 0.009 0.006 

RMSE 0.089 0.116 0.096 0.095 0.091 0.094 0.100 0.102 0.105 

           

Table 4.10: Bias and RMSE (Realistic Data) 

Note: Biased results are in boldface, i.e., Bias > 0.010. 

 

 Number of Variables 

2 3 4 5 6 7 8 9 10 

CD 94.6 95.3 95.8 94.7 95.2 96.4 94.6 95.3 94.8 

LD 92.2 91.6 92.8 91.5 86.8 85.0 89.8 90.0 90.8 

EMB 94.3 94.1 94.7 93.9 96.1 94.2 94.0 94.4 94.7 

DA1 94.1 92.2 94.4 93.4 95.7 92.2 93.1 92.9 93.1 

DA2 94.0 94.0 94.8 94.4 95.9 94.5 93.8 95.0 95.0 

FCS1 94.6 94.7 96.3 96.7 97.0 97.0 96.7 96.9 97.7 

FCS2 94.7 93.8 95.5 95.7 96.4 94.3 94.8 95.2 96.1 

D-SI 32.7 74.5 79.2 77.6 77.7 74.1 75.3 75.1 68.8 

S-SI 87.9 83.2 82.3 82.5 84.2 82.1 81.0 80.3 81.2 

Table 4.11: Coverage of the 95% CI (Realistic Data) 

Note: Confidence invalid results are in boldface, i.e., outside of 93.6 and 96.4. 
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Table 4.12 shows the CI lengths. The overall conclusions are similar to Table 4.8. One 

difference is that the CI length by FCS1 is slightly short. 

 Number of Variables 

2 3 4 5 6 7 8 9 10 

CD 0.279 0.334 0.268 0.266 0.267 0.261 0.278 0.274 0.289 

LD 0.333 0.441 0.389 0.412 0.436 0.457 0.516 0.543 0.631 

EMB 0.314 0.429 0.364 0.356 0.362 0.359 0.397 0.396 0.432 

DA1 0.313 0.414 0.348 0.342 0.343 0.337 0.370 0.364 0.390 

DA2 0.315 0.423 0.356 0.351 0.353 0.351 0.383 0.380 0.410 

FCS1 0.315 0.416 0.353 0.348 0.350 0.350 0.382 0.380 0.406 

FCS2 0.316 0.429 0.359 0.355 0.358 0.352 0.389 0.386 0.413 

D-SI 0.288 0.380 0.292 0.289 0.291 0.278 0.302 0.294 0.315 

S-SI 0.281 0.325 0.262 0.257 0.259 0.255 0.269 0.267 0.277 

Table 4.12: Lengths of the 95% CI (Realistic Data) 

 

Table 4.13 displays the computational time required to generate multiple imputations. The 

overall conclusions are similar to Table 4.9. 

 Number of Variables 

2 3 4 5 6 7 8 9 10 

EMB 0.14 0.15 0.16 0.20 0.23 0.28 0.36 0.44 0.53 

DA2 0.04 0.05 0.06 0.10 0.15 0.22 0.33 0.47 0.67 

FCS2 1.05 2.55 4.22 8.92 12.02 15.59 20.82 26.78 35.95 

Table 4.13: Computational Time (Realistic Data) 

Note: Reported values are the time in seconds to perform multiple imputation, which is 

averaged over 1,000 simulation runs. The fastest results are in boldface. 

 

4.9 Conclusions 

This chapter assessed the relative performance of the three multiple imputation algorithms (DA, 

FCS, and EMB). In both theoretical and realistic settings (Table 4.7 and Table 4.11), if between-

imputation iterations were ignored, the MCMC algorithms (DA and FCS) did not attain 

confidence validity. The nominal 95% CIs by DA and FCS without iterations were different from 

95% coverage beyond the margin of error in 1,000 simulation runs. This is because the CI lengths 

by DA without iterations were generally too short, and the CI lengths by FCS are generally too 

long (Table 4.8 and Table 4.12). Based on Schafer (1997, p.139), this can be explained by choices 

for starting values. DA uses EM as a single starting value for 𝑀 chains that understates missing 

data uncertainty (Schafer, 2016, p.22) while FCS uses random draws as 𝑀  over-dispersed 

starting values that overstates missing data uncertainty (van Buuren and Groothuis-Oudshoorn, 
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2011, p.6). Without iterations, imputed values depend on the choice of starting values. 

DA and FCS can be both confidence valid under the large number of iterations; however, the 

assessment of convergence in MCMC is notoriously difficult. Furthermore, the convergence 

properties of FCS are currently under debate due to possible incompatibility (Li et al., 2012; Zhu 

and Raghunathan, 2015). On the other hand, the current study found that EMB was confidence 

valid regardless of the situations. Therefore, EMB is a confidence proper imputation algorithm 

without iterations, which allows us to avoid a painful decision-making process of how to judge 

the convergence to generate confidence proper multiple imputations. This finding is useful in the 

missing data literature. For example, while ratio imputation is often used in official statistics 

(Takahashi et al., 2017), multiple ratio imputation does not exist in the literature. The EMB 

algorithm was applied to ratio imputation to create multiple ratio imputation (Takahashi, 2017b; 

Takahashi, 2017c). 

No simulation studies can include all the patterns of relevant data (Kropko et al., 2014, p.511). 

Therefore, the current study focused on two types of data, (1) theoretical and (2) realistic. 

Although the author believes that the two data generation processes cover data types relevant to 

many social research situations, the results in any simulation studies must be read with caution 

(Hardt et al., 2014, p.11). Future research should delve into other data types, such as small-𝑛 data, 

large-𝑝 data, categorical data, to name a few. 
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5 Multiple Ratio Imputation by the EMB Algorithm: Theory and Simulation 

This chapter derived from Takahashi (2017b), a peer-reviewed article in the Journal of Modern 

Applied Statistical Methods 16(1), which is operated by the Wayne State University Library 

System, classified as one of the top 115 libraries in the United States by the Association for 

Research Libraries (Kyrillidou et al., 2015). The Journal of Modern Applied Statistical Methods 

is indexed in Scopus by Elsevier as of April 2017. The author would like to thank JMASM Inc. 

for permission to use “Multiple ratio imputation by the EMB algorithm: Theory and simulation” 

(Journal of Modern Applied Statistical Methods, vol.16, no.1, 630-656). 

5.1 Introduction 

In survey data, missing values are prevalent. At best, missing data are inefficient because the 

incomplete dataset does not contain as much information as is expected. At worst, missing data 

can be biased if non-respondents are systematically different from respondents (Rubin, 1987). 

The best solution to the missing data problem is to collect the true data, by resending 

questionnaires or by calling respondents. Nevertheless, there are two problems to this ideal 

solution. First, data users often have no luxury of collecting more data to take care of missingness. 

Second, facing a world-wide trend of resource reduction in official statistics, data providers such 

as national statistical agencies need to make the statistical production as efficient as possible. 

From these two perspectives for both data users and data providers, parametric imputation models, 

if used properly, may help to reduce bias and inefficiency due to missing values. In fact, if the 

missing mechanism is at random (MAR), it has been demonstrated that imputation can ameliorate 

the problems associated with incomplete data (Little and Rubin, 2002; de Waal et al., 2011). 

Among others, ratio imputation is often used to treat missing values in practice (de Waal et al., 

2011; Thompson and Washington, 2012; Office for National Statistics, 2014). When there is an 

auxiliary variable that is a de facto proxy for the target incomplete variable, ratio imputation is 

assumed to produce high quality data (Hu et al., 2001). On the other hand, proponents of multiple 

imputation have long argued that single imputation generally ignores estimation uncertainty by 
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treating imputed values as if they were true values (Rubin, 1987; Schafer, 1997; Little and Rubin, 

2002). Multiple imputation is indeed known to be the standard method of handling missing data 

(Baraldi and Enders, 2010; Cheema, 2014). In the literature, however, there is no such thing as 

multiple ratio imputation, leading to a gap between theory and practice. Therefore, this chapter 

fills in this gap by proposing a novel application of the Expectation-Maximization with 

Bootstrapping (EMB) algorithm to ratio imputation, where multiply-imputed values will be 

created for each missing value. 

This chapter describes the standard single ratio imputation techniques and their limitations, 

illustrates the mechanism and advantages of multiple ratio imputation, and assesses the 

performance of multiple ratio imputation using a total of the 45,000 simulated datasets based on 

a variety of sample sizes, missing rates, and missingness mechanisms. This research shows that 

the fit of multiple ratio imputation is generally as good as or better than that of traditional 

imputation methods such as single ratio imputation and regular multiple imputation if the 

assumption holds. Thus, multiple ratio imputation will be a valuable option for treating missing 

data problems. Also, Software MrImputation is provided in Chapter 6. 

5.2 Notations 

Let us take a moment to review the notations used throughout this chapter. 𝐃 is an 𝑛 × 𝑝 

dataset, where 𝑛 is the number of observations and 𝑝 is the number of variables. If no data are 

missing, the distribution of 𝐃 is assumed to be multivariate normal, with the mean vector 𝛍 and 

variance-covariance matrix 𝚺, i.e., 𝐃~𝑁𝑝(𝛍, 𝚺). Let 𝑖 be an observation index, 𝑖 = 1,… , 𝑛. 

Let 𝑗 be a variable index, 𝑗 = 1,… , 𝑝. Thus, 𝐃 = {𝐘𝟏, … , 𝐘𝐩}, where 𝐘𝐣 is the j-th column in 

𝐃, and 𝐘−𝐣 is the complement of 𝐘𝐣. Generally, 𝐘−𝐣 refers to all of the columns in 𝐃 except 

𝐘𝐣 . Especially, this chapter deals with a two-variable imputation model; thus, 𝐘𝟏  is the 

incomplete variable (target variable for imputation) and 𝐘𝟐 is the complete variable (auxiliary 

variable). Thus, 𝐃 = {𝐘𝐢𝟏, 𝐘𝐢𝟐}.  

Also, let 𝐑 be a response indicator matrix, whose dimension is the same as 𝐃. Whenever 𝐃 
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is observed 𝐑 = 1, and whenever 𝐃 is not observed 𝐑 = 0. Note, however, that R in Italics 

refers to the R statistical environment. Furthermore, 𝐃𝐨𝐛𝐬 refers to the observed part of data, and 

𝐃𝐦𝐢𝐬 refers to the missing part of data, i.e., 𝐃 = {𝐃𝐨𝐛𝐬, 𝐃𝐦𝐢𝐬}.  

Finally, 𝛽 is the slope in the complete model, 𝛽̂ is the slope estimated by the observed model, 

and 𝛽̃ is the estimated slope by multiple imputation. 

5.3 Assumptions of Missing Mechanisms 

This section briefly explains the three common assumptions of missingness (Little and Rubin, 

2002, pp.11-13, pp.312-313; King et al., 2001, pp.50-51). This is an important issue, because the 

results of statistical analyses depend on the type of missing mechanisms (Iwasaki, 2002, pp.7-8). 

The first assumption is Missing Completely At Random (MCAR), which means that the 

missingness probability of a variable is independent of the data for the unit. In other words, 

𝑃(𝐑|𝐃) = 𝑃(𝐑). Take an economic survey as an example. If enterprises choose to answer their 

turnover values by tossing a coin, this is a perfect example of MCAR. This is the easiest case to 

take care of, because MCAR is simply a case of random subsampling from the intended sample; 

thus, subsamples may be inefficient, but unbiased. Note that the assumption of MCAR can be 

tested by entering dummy variables for each variable, scoring it 1 if the data are missing and 0 

otherwise. 

The second assumption is the case where missingness is conditionally at random. Traditionally, 

this is known as Missing At Random (MAR), which means that the conditional probability of 

missingness given data is equal to the conditional probability of missingness given observed data. 

In other words, 𝑃(𝐑|𝐃) = 𝑃(𝐑|𝐃𝐨𝐛𝐬). If enterprises with the smaller number of employees are 

more likely to refuse to answer their turnover values, then this is an example of MAR, assuming 

that there is a column in the dataset that has values on the number of employees. If the missing 

mechanism is at random, imputation can rectify the bias due to missingness. Note that the 

assumption of MAR (unlike MCAR) cannot be tested. 

The third assumption is Non-Ignorable (NI), where the missingness probability of a variable 
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depends on the variable’s value itself, and this relationship cannot be broken conditional on 

observed data. In other words, 𝑃(𝐑|𝐃) ≠ 𝑃(𝐑|𝐃𝐨𝐛𝐬). An example of NI is that enterprises with 

lower values of turnover are more likely to refuse to answer their turnover values and the other 

variables in the dataset cannot be used to predict which enterprises have small amounts of turnover. 

If the missing mechanism is NI, a general-purpose imputation method may not be appropriate. 

Instead, a special technique should be developed to take care of the unique nature of non-ignorable 

missing mechanisms.  

Note that, to be strict, for the missingness mechanism to be ignorable, both of the MAR and 

distinctness conditions need to be met (Little and Rubin, 2002, pp.119-120). However, under 

many practical conditions, the missingness data model is often regarded as ignorable if the MAR 

condition is satisfied (Allison, 2002, p.5; van Buuren, 2012, p.33). This practically means that NI 

is Not Missing At Random (NMAR). 

Also, as Carpenter and Kenward (2013, p.12) nicely put it, MAR actually means that the 

probability of observing a variable’s value often depends on its own value, but the dependence 

can be eliminated, given observed data. NI means that the probability of observing a variable’s 

value not only depends on its own value, but also the dependence cannot be eliminated, given 

observed data. However, the exact meaning of MAR differs from researchers to researchers 

(Seaman et al., 2013); thus, there is some ambivalence to this terminology. 

5.4 Existing Algorithms and Software for Multiple Imputation 

Before moving on to the discussion of multiple ratio imputation, this section is a concise review 

of the existing multiple imputation algorithms and software programs. As of today, there are three 

major algorithms for multiple imputation. 

The first traditional algorithm is based on Markov chain Monte Carlo (MCMC). This is the 

original version of Rubin’s (1978, 1987) multiple imputation. R-Package NORM currently 

implements this version of multiple imputation (Schafer, 1997; Fox, 2015). The second major 

algorithm is called Fully Conditional Specification (FCS), also known as chained equations by 
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van Buuren (2012). R-Package MICE currently implements this version of multiple imputation 

(van Buuren and Groothuis-Oudshoorn, 2011; van Buuren and Groothuis-Oudshoorn, 2015). The 

FCS algorithm is known to be flexible. The third relatively new algorithm is the Expectation-

Maximization with Bootstrapping (EMB) algorithm by Honaker and King (2010). R-Package 

AMELIA II currently implements this version of multiple imputation (Honaker et al., 2011; 

Honaker et al., 2015). The EMB algorithm is known to be computationally efficient. 

Assessing the superiority among the different multiple imputation algorithms is beyond the 

scope of the current study. Suffice it to say that, according to Takahashi and Ito (2013b), if the 

underlying distribution can be approximated by a multivariate normal distribution with the MAR 

condition, all of the three algorithms essentially give the same answers. As for the performance 

of the EMB algorithm, Honaker and King (2010) contend that the estimates of population 

parameters in bootstrap resamples can be appropriately used instead of random draws from the 

posterior. In fact, Rubin (1987, p.124) argues that the approximately Bayesian bootstrap method 

is proper imputation because it incorporates between-imputation variability. Also, Little and 

Rubin (2002, pp.216-217) assure that the substitution of Maximum Likelihood Estimates (MLEs) 

from bootstrap resamples is proper because the MLEs from the bootstrap resamples are 

asymptotically identical to a sample drawn from the posterior distribution. Therefore, multiple 

imputation by the EMB algorithm can be considered to be proper imputation in Rubin’s sense 

(1987, pp.118-119). Also, according to van Buuren (2012, p.58), the bootstrap method is 

computationally efficient because there is no need to make a draw from the 𝜒2 distribution, 

unlike the other traditional algorithms of multiple imputation. This means that it is not necessary 

to resort to the Cholesky decomposition (a.k.a. the Cholesky factorization), the property of which 

is that if A is a symmetric positive definite matrix, i.e., 𝐀 = 𝐀𝐓, then there is a matrix L such that 

𝐀 = 𝐋𝐋𝐓, which means that 𝐀 can be factored into 𝐋𝐋𝐓, where L is a lower triangular matrix 

with positive diagonal elements (Leon, 2006, p.389). Chapter 4 of this dissertation demonstrated 

that the EMB algorithm would be more useful than DA and FCS. 
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Nonetheless, R-Package AMELIA II does not allow us to estimate the multiple ratio imputation 

model. In fact, none of the existing multiple imputation software programs mentioned above have 

an option to perform multiple ratio imputation. Lee et al. (1994, p.234) developed an application-

specific multiple ratio imputation model, but to the author’s knowledge, a general-purpose 

multiple ratio imputation model has not been developed and implemented. This chapter 

contributes to the literature by applying the EMB algorithm to ratio imputation; thus, the new 

multiple ratio imputation is born. 

5.5 Single Ratio Imputation 

This section outlines the logic and mechanism behind ratio imputation to see why multiple ratio 

imputation is necessary and useful. Suppose that the population model is equation (5.1). Under 

the following special case, the ratio  𝑌̅1 𝑌̅2⁄  is an unbiased estimator of 𝛽 , where 𝜀𝑖  is 

independent of 𝑌𝑖2 with the mean of 0 and the unknown variance of 𝑌𝑖2𝜎
2 (Cochran, 1977, 

p.158; Shao, 2000, p.79; Liang et al., 2008, p.2). Under the general case, the ratio 𝑌̅1 𝑌̅2⁄  is a 

consistent but biased estimator of 𝛽, and the mean of 𝜀𝑖 is 0 with unknown variance. However, 

as the sample size increases, this bias tends to be negligible. Also, the distribution of the ratio 

estimate is known to be asymptotically normal (Cochran, 1977, p.153). 

𝑌𝑖1 = 𝛽𝑌𝑖2 + 𝜀𝑖 (5.1) 

 

Suppose that 𝑌𝑖𝑡 is missing in our survey and that 𝑌𝑖𝑡−1 is fully observed in a previous dataset, 

where 𝑌𝑖𝑡 is the current value of the variable and 𝑌𝑖𝑡−1 is the value of the same variable at an 

earlier moment. The missing values of 𝑌𝑡 may be imputed by equation (5.2), where the value of 

𝛽 reflects the trend between the two time points. 

𝑌̂𝑖𝑡 = 𝛽𝑌𝑖𝑡−1  (5.2) 

 

A special case of equation (5.2) is cold deck imputation (de Waal et al., 2011, p.245), an 

example of which is that a missing value for unit i in an economic survey at 𝑡 is replaced with 

an observed value for unit i in another highly reliable dataset such as tax data at 𝑡 − 1. This model 
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implies that the imputer is confident that 𝛽  is always 1. Thus, there will be no estimation 

uncertainty whatsoever. A general case of equation (5.2) is ratio imputation (de Waal et al., 2011, 

p.250), an example of which is that a missing value for unit i of an economic survey at 𝑡 is 

replaced with an observed value for unit i of the same economic survey at 𝑡 − 1, assuming that 

unit i answered at 𝑡 − 1. In this case, the imputer is not confident that 𝛽 is always 1. Thus, there 

will be estimation uncertainty. 

Therefore, in the general case of equation (5.2), the value of 𝛽 is not known and must be 

estimated from the observed part of data. For this purpose, ratio imputation takes the form of a 

simple regression model without an intercept, whose slope coefficient is calculated not by OLS, 

but by the ratio between the means of the two variables. In other words, the ratio imputation model 

is equation (5.3), where 𝛽̂ = 𝑌̅1,𝑜𝑏𝑠 𝑌̅2,𝑜𝑏𝑠⁄ . Also, ratio imputation can be made stochastic by 

adding a disturbance term as in equation (5.4) (Hu et al., 2001, pp.15-16). 

𝑌̂𝑖1 = 𝛽̂𝑌𝑖2  (5.3) 

 

𝑌̂𝑖1 = 𝛽̂𝑌𝑖2 + 𝜀𝑖̂  (5.4) 

 

This study uses Table 5.1 for illustration, where the simulated data on income among 10 people 

are recorded.  

Table 5.1. Example Data 

(Simulated Weekly Income in U.S. Dollars) 

ID Income0 Income1 Income2 

1 543 543 514 

2 272 272 243 

3 797 NA 597 

4 239 239 264 

5 415 415 350 

6 371 371 346 

7 650 NA 545 

8 495 495 475 

9 553 553 564 

10 710 NA 558 
Note. Income0 is the true complete variable. Income1 is the observed 

incomplete variable with NA = missing. Income2 is the auxiliary variable. 
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Income0 is the unobserved truth, Income1 is the current value, and Income2 is the previous value. 

The mean of Income0 is 504.500, the mean of income1 is 412.571, and the mean of Income2 is 

445.600. 

Table 5.2 presents the imputed dataset by both deterministic ratio imputation and stochastic 

ratio imputation. The true model is 𝐼𝑛𝑐𝑜𝑚𝑒̂
0 = 𝛽 × 𝐼𝑛𝑐𝑜𝑚𝑒2 , where 𝛽 =

𝑚𝑒𝑎𝑛(𝐼𝑛𝑐𝑜𝑚𝑒0) 𝑚𝑒𝑎𝑛(𝐼𝑛𝑐𝑜𝑚𝑒2)⁄ = 1.132 . On the other hand, the imputation model is 

𝐼𝑛𝑐𝑜𝑚𝑒̂
1 = 𝛽̂ × 𝐼𝑛𝑐𝑜𝑚𝑒2 , where 𝛽̂ = 𝑚𝑒𝑎𝑛(𝐼𝑛𝑐𝑜𝑚𝑒1,𝑜𝑏𝑠) 𝑚𝑒𝑎𝑛(𝐼𝑛𝑐𝑜𝑚𝑒2,𝑜𝑏𝑠)⁄ = 1.048 . 

This clearly means that the imputation model consistently underestimates the true model due to 

missing values. 

Table 5.2. Example of Imputed Data 

(Simulated Weekly Income in U.S. Dollars) 

 

ID 

 

Income0 

 

Income1 

Deterministic 

Ratio 

Imputation 

Stochastic 

Ratio 

Imputation 

1 543 543 543.000 543.000 

2 272 272 272.000 272.000 

3 797 NA 625.594 586.441 

4 239 239 239.000 239.000 

5 415 415 415.000 415.000 

6 371 371 371.000 371.000 

7 650 NA 571.103 575.654 

8 495 495 495.000 495.000 

9 553 553 553.000 553.000 

10 710 NA 584.756 621.730 
Note. Income0 is the true complete variable. Income1 is the observed incomplete variable with NA 

= missing. 
 

The deterministic imputations are the exact predicted values by the imputation model. The 

stochastic imputations deviate from the predictions, reflecting fundamental uncertainty captured 

by 𝜀𝑖̂. Nevertheless, both types of ratio imputation models suffer from the lack of mechanism to 

incorporate estimation uncertainty, i.e., both models share the same deterministically calculated 

value of 𝛽̂ = 1.048, which is clearly different from the true 𝛽 = 1.132. 

Ratio imputation is considered to be an important tool in official statistics, because the model 

is supposed to be intuitively easy to verify for the practitioners (Bechtel et al., 2011). As a result, 

many national statistical agencies use ratio imputation in their statistical production processes, 
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such as the U.S. Census Bureau (Thompson and Washington, 2012), the UK Office for National 

Statistics (2014), Statistics Netherlands (de Waal et al., 2011, pp.244-246), to name a few. 

However, this section demonstrated that the standard single ratio imputation models ignored 

estimation uncertainty. Thus, multiple ratio imputation comes for the rescue on this point. 

5.6 Theory of Multiple Ratio Imputation 

As the literature has demonstrated, if the missing mechanism is MAR, imputation can 

ameliorate the bias due to missingness (Little and Rubin, 2002; de Waal et al., 2011). Caution is 

that imputed values are not the complete reproduction of the true values, and that the goal of 

imputation is generally not to replicate the truth for each missing value, but to make it possible to 

have a valid statistical inference. For this purpose, it is necessary to evaluate the error due to 

missingness, for which Rubin (1978, 1987) proposed multiple imputation as a solution. Indeed, 

Baraldi and Enders (2010) and Cheema (2014) demonstrate that multiple imputation is superior 

to listwise deletion, mean imputation, and single regression imputation. Furthermore, Leite and 

Beretvas (2010) contend that multiple imputation is robust to violations of continuous variables 

and the normality assumption. Thus, multiple imputation is the standard method of treating 

missing data. The current study extends the utility of ratio imputation by transforming it to 

multiple imputation by way of the EMB algorithm described in this section. 

Multiple imputation in theory is to randomly draw several imputed values from the distribution 

of missing data. However, missing data are by definition unobserved; as a result, the true 

distribution of missing data is always unknown. A solution to this problem is to estimate the 

posterior distribution of missing data based on observed data, and to make a random draw of 

imputed values. Honaker and King (2010) and Honaker et al. (2011) suggested the use of the 

EMB algorithm for the purpose of drawing the mean vector and the variance-covariance matrix 

from the posterior density, and presented a general-purpose multiple imputation software program 

called AMELIA II, which is a computationally efficient and highly reliable multiple imputation 

program. Nevertheless, as presented above, AMELIA II does not allow us to estimate the ratio 
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imputation model. 

The previous section demonstrated that the value of 𝛽 was estimated by 𝛽̂ = 𝑌̅1,𝑜𝑏𝑠 𝑌̅2,𝑜𝑏𝑠⁄ . 

Therefore, in order to create multiple ratio imputation, the mean vector is what needs to be 

randomly drawn from the posterior distribution of missing data given observed data. This chapter 

applies the EMB algorithm to ratio imputation to create multiple ratio imputation. In this section, 

let us review the bootstrap method and the Expectation-Maximization (EM) algorithm, in order 

to illustrate how the EMB algorithm works for the purpose of generating multiple ratio imputation. 

5.6.1 Nonparametric Bootstrap 

The first step for multiple ratio imputation is to randomly draw vectors of means from an 

appropriate posterior distribution to account for the estimation uncertainty. The EMB algorithm 

replaces the complex process of random draws from the posterior by nonparametric bootstrapping, 

which uses the existing sample data (size = n) as the pseudo-population and draws resamples (size 

= n) with replacement M times (Horowitz, 2001). If data 𝑌1, … , 𝑌𝑛  are independently and 

identically distributed from an unknown distribution 𝐹, this distribution is estimated by 𝐹̂(𝑦), 

which is the empirical distribution 𝐹𝑛 defined in equation (5.5), where 𝐼(𝑌) is the indicator 

function of the set 𝑌.  

𝐹𝑛(𝑦) =
1

𝑛
∑𝐼(𝑌𝑖 ≤ 𝑦)

𝑛

𝑖=1

  (5.5) 

 

Based on equation (5.5), bootstrap resamples are generated. The distribution 𝐹̂ can be any 

estimator in order to generate the bootstrap resamples of 𝐹 based on 𝑌1, … , 𝑌𝑛. A nonparametric 

estimator of 𝐹 is the empirical distribution 𝐹𝑛 defined by equation (5.5) (Shao and Tu, 1995, 

pp.2-4, pp.9-11; DeGroot and Schervish, 2002, pp.753-754). 

This section uses Table 5.3 for illustration. The incomplete data in Table 5.3 are the original 

missing data in Table 5.1. When listwise deletion is applied to this dataset, the mean of income1 

is 412.571. The Bootstrap 1 and Bootstrap 2 in Table 5.3 refer to the bootstrap resamples, where 
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M = 2. When listwise deletion is applied to these bootstrap datasets, the mean of incomeB11 is 

366.000 and the mean of incomeB21 is 391.286. The variation between these estimates is the 

essential mechanism of capturing estimation uncertainty due to imputation. 

Table 5.3. Bootstrap Data (M = 2) 

Incomplete Data Bootstrap 1 Bootstrap 2 

Income1 Income2 IncomeB11 IncomeB12 IncomeB21 IncomeB22 

543 514 NA 545 495 475 

272 243 272 243 272 243 

NA 597 239 264 371 346 

239 264 NA 597 415 350 

415 350 272 243 NA 597 

371 346 553 564 543 514 

NA 545 272 243 272 243 

495 475 495 475 NA 545 

553 564 553 564 371 346 

NA 558 272 243 NA 545 
Note. NA represents missing values. 

  

However, when incomplete data are bootstrapped, the chance is that each bootstrap resample 

is also incomplete. Therefore, the information from incomplete bootstrap resamples is biased and 

inefficient. The EM algorithm refines bootstrap estimates in the next section. 

5.6.2 EM Algorithm 

MLEs are the parameter estimates that maximize the likelihood of observing the existing data 

(Long, 1997, p.26), which have the NICE properties of asymptotic Normality, Invariance, 

Consistency, and asymptotic Efficiency (Greene, 2003, p.473). Nevertheless, it is difficult to 

directly calculate MLE in missing data. Making incomplete data complete requires information 

about the distribution of the data, such as the mean and the variance-covariance; however, these 

incomplete data are used to estimate the mean and the variance-covariance, which is a chicken 

and egg problem. Therefore, it is not straightforward to analytically solve this problem. For the 

purpose of dealing with this problem, iterative methods such as the EM algorithm were proposed 

to estimate such quantities of interest (Allison, 2002, pp.17-20). 

The EM algorithm first assumes a certain distribution and tentative starting values for the mean 

and the variance-covariance. Using these starting values, an expected value of model likelihood 
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is calculated, the likelihood is maximized, model parameters are estimated that maximize these 

expected values, and then the distribution is updated. The expectation and the maximization steps 

are repeated until the values converge, whose properties are known to be an MLE (Schafer, 1997, 

pp.37-39; Iwasaki, 2002, pp.285-288; Do and Batzoglou, 2008). Formally, the EM algorithm can 

be summarized as follows. Starting from an initial value 𝜃0, repeat the following two steps: 

E-step: 𝑄(𝜃|𝜃𝑡) = ∫ 𝑙(𝜃|𝑌) 𝑃(𝑌𝑚𝑖𝑠|𝑌𝑜𝑏𝑠; 𝜃𝑡)𝑑𝑌𝑚𝑖𝑠, where 𝑙(𝜃|𝑌) is log likelihood. 

M-step: Maximize 𝜃𝑡+1 = argmax
𝜃

𝑄(𝜃|𝜃𝑡) with respect to 𝜃. 

Under certain conditions, it is proven that 𝜃𝑡 → 𝜃 (𝑡 → ∞). 

The values in Table 5.3 were incomplete. If the EM algorithm is used to refine these values, 

the EM mean for incomeB11 is 405.741 and the EM mean for incomeB12 is 398.100; also, the 

EM mean for incomeB21 is 450.912 and the EM mean for incomeB22 is 420.400. Using these 

values, the ratio will be estimated as 1.019 and 1.072, respectively. Thus, in this small example, 

the ratio is estimated as 1.046 on average, ranging from 1.019 to 1.072. This variation captures 

the estimation uncertainty due to missingness, which is called the between-imputation variance 

(Little and Rubin, 2002, p.211). Obviously, real applications require a much larger value of M 

(Graham et al., 2007; Bodner, 2008). 

5.6.3 Application of the EMB Algorithm to Multiple Ratio Imputation 

The multiple ratio imputation model is defined by equation (5.6), where tilde means that these 

values are drawn from an appropriate posterior distribution of missing data. In other words, 𝛽̃ is 

a vector of ratios drawn from the appropriate posterior taking estimation uncertainty into account 

and 𝜀𝑖̃ is the disturbance term taking fundamental uncertainty into account (King et al., 2001, 

p.54). 

𝑌̃𝑖1 = 𝛽̃𝑌𝑖2 + 𝜀𝑖̃, where  

𝛽̃ =
𝑌̃̅1

𝑌̃̅2

 

(5.6) 
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Table 5.4 presents the result of multiple ratio imputation, where M = 2, using the same example 

data as in Table 5.1. The model is 𝐼𝑛𝑐𝑜𝑚𝑒̃
1 = 𝛽̃ × 𝐼𝑛𝑐𝑜𝑚𝑒2 + 𝜀𝑖̃. If M = 100, the mean of 𝛽̃ is 

1.050 with the standard deviation of 0.048, ranging from 0.903 to 1.342. This variation captures 

the stability of the imputation model, which serves as a diagnostic method for imputation, because 

the simulation standard error (between-imputation variance) can be appropriately used for 

assessing the likeliness of the simulation estimator being close to the true parameter of interest 

(DeGroot and Schervish, 2002, p.704). Note that, in Table 5.4, the values of Imputation1 and 

Imputation2 for ID 3, 7, and 10 change over columns Imputation1 to Imputation2, because the 

values in these rows are imputed values. Also, note that the values in the other rows do no change 

over columns, because these are observed values. 

Table 5.4. Multiple Ratio Imputation Data (M = 2) 

ID Income1 Income2 Imputation1 Imputation2 

1 543 514 543.000 543.000 

2 272 243 272.000 272.000 

3 NA 597 620.917 662.732 

4 239 264 239.000 239.000 

5 415 350 415.000 415.000 

6 371 346 371.000 371.000 

7 NA 545 571.100 600.655 

8 495 475 495.000 495.000 

9 553 564 553.000 553.000 

10 NA 558 597.406 637.115 

 

Just as in regular multiple imputation (Little and Rubin, 2002, p.86), the estimates by multiple 

ratio imputation can be combined as follows. Let 𝜃𝑚 be an estimate based on the m-th multiply-

imputed dataset. The combined point estimate 𝜃̅𝑀 is equation (5.7). 

𝜃̅𝑀 =
1

𝑀
∑ 𝜃𝑚

𝑀

𝑚=1

 (5.7) 

 

The variance of the combined point estimate consists of two parts. Let 𝑣𝑚 be the estimate of 

the variance of 𝜃𝑚, var(𝜃𝑚), let 𝑊̅𝑀 be the average of within-imputation variance, let 𝐵̅𝑀 be 

the average of between-imputation variance, and let 𝑇𝑀 be the total variance of 𝜃̅𝑀. Then, the 
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total variance of 𝜃̅𝑀 is equation (5.8), where (1 + 1 𝑀⁄ ) is an adjustment factor because M is 

not infinite. If M is infinite, lim
𝑀→∞

(1 +
1

𝑀
) 𝑣̃𝑀 = 𝑣̃𝑀 . In short, the variance of 𝜃̅𝑀  takes into 

account within-imputation variance and between-imputation variance. 

𝑇𝑀 = 𝑊̅𝑀 + (1 +
1

𝑀
) 𝐵̅𝑀 =

1

𝑀
∑ 𝑣𝑚

𝑀

𝑚=1

+ (1 +
1

𝑀
) [

1

𝑀 − 1
∑(𝜃𝑚 − 𝜃̅𝑀)

2
𝑀

𝑚=1

] (5.8) 

 

Figure 1 graphically outlines a schematic overview of multiple ratio imputation (M = 5). In 

summary, multiple ratio imputation replaces missing values by M simulated values, where M > 1. 

Conditional on observed data, the imputer constructs a posterior distribution of missing data, 

draws a random sample from this distribution, and creates several imputed datasets. Then, 

researchers and analysts conduct standard statistical analysis, separately using each of the M 

multiply-imputed datasets, and combine the results of the M statistical analyses in the above 

manner to calculate a point estimate just as in regular multiple imputation. 

 
Figure 5.1. Schematic of Multiple Ratio Imputation by the EMB Algorithm (M = 5) 
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5.7 Monte Carlo Evidence 

Using a total of the 45,000 simulated datasets with various characteristics, this section 

compares the Relative Root Mean Square Errors (RRMSE) of the estimators for the mean, the 

standard deviation, and the t-statistics in regression across different missing data handling 

techniques. The data used in this section are a modified version of the simulated data used by 

King et al. (2001, p.61). The Monte Carlo experiments here are based on 1,000 iterations, each of 

which is a random draw from the following multivariate normal distribution: Variables y1 and y2 

are normally distributed with the mean vector (6, 10) and the standard deviation vector (1, 1), 

where the correlation between y1 and y2 is set to 0.6 (Note that the value of 0.6 was chosen 

because this is approximately the correlation value among the variables in official economic 

statistics which is the target of the current study. Also, in other few runs, not reported, the 

parameter values were changed, and the conclusions were very similar). Each set of these 1,000 

data is repeated for n = 50, n =100, n =200, n =500, and n =1,000; thus, there are 5,000 datasets 

of five different data sizes. Our simulated data assume that the population model is equation (5.9). 

𝑌𝑖1 = 𝛽𝑌𝑖2 + 𝜀𝑖 , 𝑤ℎ𝑒𝑟𝑒 

𝛽 =
𝑌̅1

𝑌̅2

= 0.6, 𝜀𝑖~𝑁(0, 0.64) 

(5.9) 

 

Furthermore, following King et al. (2001, p.61), each of these 5,000 datasets is made 

incomplete using the three data generation processes of MCAR, MAR, and NI as in Table 5.5. 

Table 5.5: Missingness Mechanisms and Missing Rates 
 

 

MCAR 

Missingness of y1 is a function of u. 

15%: y1 is missing if u > 0.85. 

25%: y1 is missing if u > 0.75. 

35%: y1 is missing if u > 0.65. 
 
 

MAR 

Missingness of y1 is a function of y2 and u. 

15%: y1 is missing if y2 > 10 and u > 0.7. 

25%: y1 is missing if y2 > 10 and u > 0.5. 

35%: y1 is missing if y2 > 10 and u > 0.3. 
 

 

NI 

Missingness of y1 is a function of y1, x, and u. 

15%: y1 is missing if y1 > 6 and u > 0.7. 

25%: y1 is missing if y1 > 6 and u > 0.5. 

35%: y1 is missing if y1 > 6 and u > 0.3. 
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Under the assumption of MCAR, the missingness of y1 randomly depends on the values of u 

(uniform random numbers). Under the assumption of MAR, the missingness of y1 depends on the 

values of y2 and u. Under the assumption of NI, the missingness of y1 depends on the observed 

and unobserved values of y1 itself and the values of u. 

Note that Variable y1 is the target incomplete variable for imputation, Variable y2 is completely 

observed in all of the situations to be used as the auxiliary variable, and Variable u in Table 5.5 is 

1,000 sets of continuous uniform random numbers ranging from 0 to 1 for the missingness 

mechanism. The average missing rates are set to 15%, 25%, and 35%. These missing rates 

approximately cover the range from 10% to 40% missingness. 

Therefore, there is a total of 45,000 datasets, i.e., 1,000 datasets multiplied by five sample sizes, 

three missing mechanisms, and three missing rates.  

The overall performance can be captured by the Mean Square Error (MSE), which is defined 

as equation (5.10), where 𝜃 is the true quantity of interest and 𝜃 is an estimator. The MSE 

measures the dispersion around the true value of the parameter, suggesting that an estimator with 

the smallest MSE is the best of a competing set of estimators (Gujarati, 2003, p.901). 

𝑀𝑆𝐸(𝜃) = 𝐸(𝜃 − 𝜃)
2
 (5.10) 

 

For the ease of interpretation, following Di Zio and Guarnera (2013, p.549), this study uses the 

Relative Root Mean Square Error (RRMSE), which is defined as equation (5.11), where 𝜃 is the 

truth, 𝜃 is an estimator, and T is the number of trials. For example, 𝜃 in the following analyses 

is the mean, the standard deviation, and the t-statistic based on complete data. 𝜃 is the estimated 

quantity based on imputed data. T is 1,000. 

𝑅𝑅𝑀𝑆𝐸(𝜃) = √
1

𝑇
∑(

𝜃 − 𝜃

𝜃
)

2𝑇

𝑡=1

  (5.11) 

 

The complete results based on the 45,000 datasets are presented in Tables 5.6, 5.8, and 5.9. In 
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the following analyses, the multiple ratio imputation model sets the number of multiply-imputed 

datasets (M) to 100, based on the recent findings in the multiple imputation literature (Graham et 

al., 2007; Bodner, 2008). 

5.7.1 RRMSE Comparisons for the Mean 

Table 5.6 presents the RRMSE comparisons for the mean among listwise deletion, 

deterministic single ratio imputation, and multiple ratio imputation (M = 100), where the RRMSE 

is averaged over the 1,000 simulations. For multiple ratio imputation, the 100 mean values are 

combined using equation (5.7) in each of the 1,000 simulations. 

The standard recommendation (de Waal et al., 2011, p.245) is that if the goal is to calculate a 

point estimate, the choice is deterministic single ratio imputation. Thus, the main purpose of this 

comparison is to show that the performance of multiple ratio imputation is as good as that of 

deterministic single ratio imputation, which is known to be a preferred method for the estimation 

of the mean. If multiple ratio imputation equally performs well compared to deterministic single 

ratio imputation, this means that multiple ratio imputation attains the highest performance in 

estimating the mean. 

In 42 of the 45 patterns, deterministic ratio imputation and multiple imputation both outperform 

listwise deletion with 3 ties. Even when the missing mechanism is MCAR, the results by 

imputation are almost always better than those of listwise deletion. Between the ratio imputation 

methods, deterministic ratio imputation slightly performs better than multiple ratio imputation in 

14 out of the 45 patterns with 31 ties. However, the largest difference is only 0.002 in terms of 

the RRMSE. Thus, there are no significant differences between deterministic ratio imputation and 

multiple ratio imputation. Furthermore, this difference is expected to completely disappear as M 

approaches infinity. In general, under the situations where the model is correctly specified and the 

assumption of MAR is satisfied, both single imputation and multiple imputation (M = ∞) would 

be unbiased and agree on the point estimation (Donders et al., 2006, p.1089).  
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Table 5.6. RRMSE Comparisons for the Mean (45,000 Datasets) 

Sample 

Size 

Average 

Missing 

Rate 

Missing 

Mechanism 

Listwise 

Deletion 

Deterministic 

Ratio 

Imputation 

Multiple 

Ratio 

Imputation 

 

 

 

 

50 

 

15% 

MCAR 0.009 0.008 0.008 

MAR 0.017 0.008 0.008 

NI 0.026 0.017 0.018 

 

25% 

MCAR 0.014 0.011 0.011 

MAR 0.030 0.010 0.011 

NI 0.048 0.032 0.033 

 

35% 

MCAR 0.017 0.014 0.014 

MAR 0.045 0.012 0.014 

NI 0.075 0.050 0.052 

 

 

 

 

100 

 

15% 

MCAR 0.007 0.006 0.006 

MAR 0.016 0.005 0.005 

NI 0.024 0.016 0.016 

 

25% 

MCAR 0.010 0.008 0.008 

MAR 0.028 0.007 0.008 

NI 0.046 0.030 0.030 

 

35% 

MCAR 0.012 0.010 0.010 

MAR 0.044 0.008 0.010 

NI 0.073 0.048 0.050 

 

 

 

 

200 

 

15% 

MCAR 0.005 0.004 0.004 

MAR 0.015 0.004 0.004 

NI 0.024 0.016 0.016 

 

25% 

MCAR 0.007 0.005 0.005 

MAR 0.028 0.005 0.005 

NI 0.045 0.029 0.030 

 

35% 

MCAR 0.009 0.007 0.007 

MAR 0.043 0.006 0.007 

NI 0.072 0.048 0.049 

 

 

 

 

500 

 

15% 

MCAR 0.003 0.003 0.003 

MAR 0.014 0.002 0.002 

NI 0.024 0.015 0.015 

 

25% 

MCAR 0.004 0.003 0.003 

MAR 0.027 0.003 0.003 

NI 0.045 0.029 0.029 

 

35% 

MCAR 0.006 0.004 0.004 

MAR 0.043 0.004 0.005 

NI 0.072 0.047 0.048 

 

 

 

 

1000 

 

15% 

MCAR 0.002 0.002 0.002 

MAR 0.014 0.002 0.002 

NI 0.024 0.015 0.015 

 

25% 

MCAR 0.003 0.003 0.003 

MAR 0.027 0.002 0.002 

NI 0.044 0.029 0.029 

 

35% 

MCAR 0.004 0.003 0.003 

MAR 0.043 0.002 0.003 

NI 0.072 0.047 0.048 
Note. Average over the 1,000 simulations for each data type. M = 100 for multiple ratio imputation 
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The results in Table 5.6 assure that this general relationship also applies to the relationship 

between single ratio imputation and multiple ratio imputation. Therefore, on average, multiple 

ratio imputation can be expected to give essentially the same answers as to the estimation of the 

mean, compared to deterministic ratio imputation. 

On top of this, multiple ratio imputation can be more useful than deterministic single ratio 

imputation in the estimation of the mean, because multiple ratio imputation has more information 

in its output. Recall that there are three sources of variation in multiple imputation (van Buuren, 

2012, p.38). One is the conventional measure of statistical variability (also known as within-

imputation variance). Another is the additional variance due to missing values in the data (also 

known as between-imputation variance). The last one is simulation variance by the finite number 

of multiply-imputed data captured by 𝐵̅𝑀 𝑀⁄  in equation (5.8). Among these, the between-

imputation variance is particularly important, because it reflects the uncertainty associated with 

missingness (Honaker et al., 2011, p.23). 

To demonstrate how multiple ratio imputation provides additional information on the between-

imputation variance, Table 5.7 presents the mean of y1 when the missing data mechanism is MAR 

with the average missing rate of 35%, where the reported values are the average over the 1,000 

simulations. In Table 5.7, when the missing data mechanism is MAR, both of the imputation 

methods are almost equally accurate, in terms of estimating the mean. Additionally, multiple ratio 

imputation has more rows in Table 5.7 for BISD and CI (95%). BISD stands for the Between-

Imputation Standard Deviation, and CI (95%) stands for the Confidence Interval associated with 

estimation error due to missingness at the 95% level. BISD is the square-root of the between-

imputation variance and measures the dispersion of the 100 mean values based on multiple ratio 

imputation (M = 100). In other words, BISD is the variation in the distribution of the estimated 

mean, which is usually called the standard error (Baraldi and Enders, 2010, p.16). Thus, based on 

BISD, the imputer can be approximately 95% confident that the true mean value of complete data 

is somewhere between 5.941 and 6.057, after taking the error due to missingness into account. 
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Furthermore, the imputer can be approximately 95% confident that the imputed mean value (6.00) 

is meaningfully different from the listwise deletion estimate (5.74), which is outside the 95% 

confidence interval (5.94, 6.06). Single ratio imputation (both deterministic and stochastic) lacks 

this mechanism of assessing estimation uncertainty. 

Table 5.7. Mean of y1 (MAR-35%) 

 Complete  

Data 

Listwise 

Deletion 

Deterministic 

Ratio Imputation 

Multiple 

Ratio Imputation 

Mean 6.000 5.741 6.000 5.999 

BISD NA NA NA 0.029 

CI (95%) NA NA NA 5.941, 6.057 

n 500 325 500 500 
Note. NA means Not-Applicable. Average over the 1,000 simulations. M = 100 for multiple ratio imputation 

5.7.2 RRMSE Comparisons for the Standard Deviation 

Table 5.8 presents the RRMSE comparisons for the standard deviation among listwise deletion, 

stochastic single ratio imputation, and multiple ratio imputation (M = 100), where the RRMSE is 

averaged over the 1,000 simulations. For multiple ratio imputation, the 100 standard deviation 

values are combined using equation (5.7) in each of the 1,000 simulations. 

The standard recommendation (de Waal et al., 2011, p.245) is that if the goal is to estimate the 

variation of data, the choice is stochastic single ratio imputation. Thus, the main purpose of this 

comparison is to show that the performance of multiple ratio imputation is as good as that of 

stochastic ratio imputation, which is known to be a preferred method to estimate the standard 

deviation. Note that, in other simulation runs, the EM algorithm was applied to the imputed data 

by the deterministic ratio imputation model, in order to compute the standard deviation. However, 

these results were not good and thus omitted here. 
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Table 5.8. RRMSE Comparisons for the Standard Deviation (45,000 Datasets) 

Sample 

Size 

Average 

Missing 

Rate 

Missing 

Mechanism 

Listwise 

Deletion 

Stochastic 

Ratio 

Imputation 

Multiple 

Ratio 

Imputation 

 

 

 

 

50 

 

15% 

MCAR 0.042 0.048 0.037 

MAR 0.045 0.047 0.038 

NI 0.048 0.052 0.043 

 

25% 

MCAR 0.059 0.062 0.049 

MAR 0.066 0.062 0.054 

NI 0.079 0.074 0.067 

 

35% 

MCAR 0.075 0.075 0.058 

MAR 0.088 0.071 0.067 

NI 0.146 0.117 0.118 

 

 

 

 

100 

 

15% 

MCAR 0.029 0.035 0.026 

MAR 0.031 0.034 0.026 

NI 0.035 0.037 0.031 

 

25% 

MCAR 0.040 0.044 0.033 

MAR 0.046 0.044 0.037 

NI 0.064 0.058 0.054 

 

35% 

MCAR 0.052 0.052 0.040 

MAR 0.067 0.054 0.047 

NI 0.121 0.097 0.098 

 

 

 

 

200 

 

15% 

MCAR 0.021 0.025 0.018 

MAR 0.022 0.025 0.019 

NI 0.025 0.027 0.023 

 

25% 

MCAR 0.028 0.030 0.023 

MAR 0.036 0.032 0.027 

NI 0.049 0.044 0.042 

 

35% 

MCAR 0.037 0.037 0.028 

MAR 0.053 0.038 0.034 

NI 0.109 0.086 0.088 

 

 

 

 

500 

 

15% 

MCAR 0.014 0.016 0.012 

MAR 0.014 0.016 0.012 

NI 0.018 0.019 0.016 

 

25% 

MCAR 0.018 0.020 0.015 

MAR 0.024 0.020 0.017 

NI 0.042 0.038 0.036 

 

35% 

MCAR 0.022 0.023 0.018 

MAR 0.043 0.024 0.021 

NI 0.106 0.083 0.084 

 

 

 

 

1000 

 

15% 

MCAR 0.010 0.012 0.008 

MAR 0.010 0.011 0.008 

NI 0.014 0.015 0.013 

 

25% 

MCAR 0.013 0.014 0.011 

MAR 0.019 0.014 0.011 

NI 0.040 0.037 0.033 

 

35% 

MCAR 0.017 0.017 0.013 

MAR 0.038 0.016 0.014 

NI 0.100 0.080 0.079 
Note. Average over the 1,000 simulations for each data type. M = 100 for multiple ratio imputation 
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In all of the 45 patterns, multiple ratio imputation always outperforms listwise deletion. Even 

when the missing mechanism is MCAR, the results by multiple ratio imputation are always better 

than those of listwise deletion. In contrast, stochastic ratio imputation outperforms listwise 

deletion in only 20 out of the 45 patterns. Especially, when the missing mechanism is MCAR, 

listwise deletion often outperforms stochastic ratio imputation in 11 out of the 15 patterns with 4 

ties, although the difference is minimal. This implies that when missing data are suspected to be 

MCAR, there is a chance that using stochastic ratio imputation may make the situation worse than 

simply using listwise deletion. When the missing mechanism is MAR or NI, stochastic ratio 

imputation indeed outperforms listwise deletion in 20 out of the 30 patterns. 

Between the ratio imputation methods, multiple ratio imputation often performs better than 

stochastic ratio imputation, 41 out of the 45 patterns. Therefore, this study contends that multiple 

ratio imputation is the preferred method for the estimation of the standard deviation. Table 5.8 

implies that, regardless of missing mechanisms, multiple ratio imputation should be used for the 

purpose of estimating the standard deviation. 

Just as in the case of estimating the mean, let us take the case of 35% missingness with the 

MAR condition as an example. Based on BISD, the imputer can be approximately 95% confident 

that the true standard deviation value of complete data is somewhere between 0.960 and 1.040, 

after taking the error due to missingness into account. 

5.7.3 RRMSE Comparisons for the t-Statistics in Regression 

The comparisons in this section are particularly important because up to today, even if the 

intercept should be zero and the slope should be estimated by the ratio between two variables, 

there are no other choices but to stick to regular multiple imputation for the computation of the t-

statistics in regression. The regression model in Table 5.9 is y2 = a + b*y1. The quantity of interest 

is the t-statistic of b, i.e., 𝑡𝑏 = 𝑏 se(𝑏)⁄ . The RRMSE reported here measures the average 

distance between the true 𝑡𝑏 based on complete data and the estimated 𝑡𝑏 based on imputed 
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data. Table 5.9 presents the RRMSE comparisons for the t-statistics in regression among listwise 

deletion, regular multiple imputation (AMELIA II), and multiple ratio imputation, where M = 100 

for both regular multiple imputation and multiple ratio imputation, and the RRMSE is averaged 

over the 1,000 simulations. For regular multiple imputation and multiple ratio imputation, the 100 

coefficient values are combined using equation (5.7), the 100 standard error values are combined 

using equation (5.8), and the t-statistics are calculated using these two values in each of the 1,000 

simulations. Remember that the multiple ratio imputation model is equation (5.6). On the other 

hand, multiple imputation by AMELIA II is equation (5.12), where the coefficients are random 

draws of the mean vectors and the variance-covariance matrices from the posterior distribution 

(Honaker and King, 2010). 

𝑌̃𝑖1 = 𝛽̃0 + 𝛽̃1𝑌𝑖2 + 𝜀𝑖̃, where 

𝛽̃1 =
𝑐𝑜𝑣̃(𝑌𝑖1, 𝑌𝑖2)

𝑣𝑎𝑟̃(𝑌𝑖2)
 

𝛽̃0 = 𝑌̃̅1 − 𝛽̃1𝑌̃̅2  

(5.12) 

 

The standard recommendation (van Buuren, 2012, pp.16-18; Hughes et al., 2016) is that if the 

goal is to obtain valid inferences with standard errors, the choice is multiple imputation which is 

a superior variance-estimation method. Thus, the main purpose of this comparison is to show that 

the performance of multiple ratio imputation is better than that of regular multiple imputation in 

terms of estimating the t-statistics. The comparison of the t-statistics in regression is appropriate, 

because it is the quantity of interest for many applied researchers in disputing whether an 

independent variable has some impact on a dependent variable. According to Cheema (2014, 

p.58), comparisons of t statistics are fair because the complete sample and the imputed sample 

are identical in all respects including power, except for the fact that no values were missing in the 

complete sample while some values were missing in the imputed values. Therefore, the 

differences in the observed value of statistics are caused by the differences between imputed 

values and their true counterparts. 
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Table 5.9. RRMSE Comparisons for t-statistics (45,000 Datasets) 

Sample 

Size 

Average 

Missing 

Rate 

Missing 

Mechanism 

Listwise 

Deletion 

Multiple 

Imputation 

AMELIA II 

Multiple 

Ratio 

Imputation 

 

 

 

 

50 

 

15% 

MCAR 0.126 0.103 0.087 

MAR 0.137 0.107 0.093 

NI 0.141 0.114 0.099 

 

25% 

MCAR 0.185 0.144 0.113 

MAR 0.220 0.173 0.135 

NI 0.222 0.175 0.138 

 

35% 

MCAR 0.242 0.189 0.134 

MAR 0.317 0.247 0.171 

NI 0.328 0.269 0.179 

 

 

 

 

100 

 

15% 

MCAR 0.104 0.075 0.066 

MAR 0.113 0.080 0.071 

NI 0.111 0.081 0.072 

 

25% 

MCAR 0.159 0.109 0.087 

MAR 0.192 0.127 0.101 

NI 0.194 0.136 0.108 

 

35% 

MCAR 0.218 0.153 0.107 

MAR 0.294 0.191 0.131 

NI 0.297 0.224 0.147 

 

 

 

 

200 

 

15% 

MCAR 0.091 0.059 0.052 

MAR 0.101 0.064 0.056 

NI 0.101 0.066 0.060 

 

25% 

MCAR 0.145 0.092 0.075 

MAR 0.181 0.106 0.085 

NI 0.177 0.117 0.095 

 

35% 

MCAR 0.208 0.136 0.097 

MAR 0.282 0.159 0.113 

NI 0.282 0.199 0.133 

 

 

 

 

500 

 

15% 

MCAR 0.084 0.050 0.044 

MAR 0.094 0.053 0.047 

NI 0.093 0.058 0.051 

 

25% 

MCAR 0.141 0.086 0.066 

MAR 0.171 0.092 0.069 

NI 0.170 0.107 0.083 

 

35% 

MCAR 0.202 0.127 0.086 

MAR 0.279 0.144 0.097 

NI 0.282 0.193 0.121 

 

 

 

 

1000 

 

15% 

MCAR 0.080 0.046 0.041 

MAR 0.089 0.046 0.043 

NI 0.091 0.048 0.049 

 

25% 

MCAR 0.137 0.053 0.063 

MAR 0.167 0.084 0.067 

NI 0.168 0.105 0.083 

 

35% 

MCAR 0.198 0.122 0.084 

MAR 0.275 0.132 0.092 

NI 0.275 0.186 0.120 
Note. Average over the 1,000 simulations for each data type. M = 100 for multiple imputation 
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The comparison of multiple ratio imputation and AMELIA II is appropriate, because the 

algorithm is the same EMB under the same platform of the R statistical environment. In all of the 

45 patterns, regular multiple imputation and multiple ratio imputation both outperform listwise 

deletion. Furthermore, multiple ratio imputation almost always outperforms regular multiple 

imputation 43 out of the 45 patterns under the condition where the true population model is 

equation (5.9). Thus, when the true model is a ratio model such as equation (5.9), multiple ratio 

imputation is more accurate and efficient than regular multiple imputation. 

Therefore, multiple ratio imputation adds an important option for the tool kit of imputing and 

analyzing the mean, the standard deviation, and the t-statistics. If the true model is equation (5.9), 

multiple ratio imputation is at least as good as and in many cases better than the other traditional 

imputation methods for the three quantities of interest, regardless of the missingness mechanisms. 

To be fair, this chapter never claims that multiple ratio imputation is always superior to regular 

multiple imputation. If the true model is not a ratio model such as equation (5.9), the superiority 

shown in this section is not guaranteed. 

5.8 Conclusion 

This chapter proposed a novel application of the EMB algorithm to ratio imputation and 

presented the mechanism and the usefulness of multiple ratio imputation. For this purpose, Monte 

Carlo evidence was presented, where the newly-developed R-function called MrImputation (See 

Chapter 6 of this dissertation) for multiple ratio imputation was applied to the 45,000 simulated 

data. 

This research showed that the fit of multiple ratio imputation was generally as good as or 

sometimes better than that of single ratio imputation and regular multiple imputation if the 

assumption holds. Specifically, for the purpose of estimating the mean, the performance of 

deterministic ratio imputation and multiple ratio imputation are essentially equally good, with 

multiple ratio imputation having additional information on estimation uncertainty. For the purpose 
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of estimating the standard deviation, multiple ratio imputation outperforms stochastic ratio 

imputation. For the purpose of estimating the t-statistics in regression, multiple ratio imputation 

clearly outperforms regular multiple imputation when the population model is equation (5.6). 

These findings are important because researchers are recommended to use different ways of 

imputation depending on the type of statistical analyses, meaning that there are no one-size-fit-

for-all imputation methods (Poston and Conde, 2014, p.476). Thus, multiple ratio imputation will 

be a valuable addition for treating missing data problems, so that multiple ratio imputation will 

expand the choice of missing data treatments. 

This said, the current research is only a starting point for multiple ratio imputation. As noted in 

Chapter 4, there are three multiple imputation algorithms. The version of multiple ratio imputation 

introduced in this research utilized the Expectation-Maximization with Bootstrapping algorithm. 

However, multiple ratio imputation is a generic imputation model; thus, future research may apply 

the other two multiple imputation algorithms to expand the scope and the applicability of the 

method. 
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6 Implementing Multiple Ratio Imputation by the EMB Algorithm in R 

This chapter derived from Takahashi (2017c), a peer-reviewed article in the Journal of Modern 

Applied Statistical Methods 16(1), which is operated by the Wayne State University Library 

System, classified as one of the top 115 libraries in the United States by the Association for 

Research Libraries (Kyrillidou et al., 2015). The Journal of Modern Applied Statistical Methods 

is indexed in Scopus by Elsevier as of April 2017. The author would like to thank JMASM Inc. 

for permission to use “Implementing multiple ratio imputation by the EMB algorithm (R)” 

(Journal of Modern Applied Statistical Methods, vol.16, no.1, 657-673). 

6.1 Introduction 

Code is presented for multiple ratio imputation step by step in the imputation stage, followed 

by the analysis stage. The Appendix combines these R-codes to present Software MrImputation 

as a collection of R-functions mrimpute and mranalyze. R-function mrimpute performs 

multiple ratio imputation. R-function mranalyze allows us to conduct statistical analyses using 

the multiply-imputed data by R-function mrimpute. 

6.2 Preparation Stage 

As an illustration, let us use the following dataset named data. Note that, in the complete code 

presented in Appendix, the name of data can be defined by option data=. Thus, it can be named 

any way an imputer wants it to be. This small example dataset contains two variables and five 

units as displayed in Figure 6.1. The observation for unit 1 in y1 is missing (NA). Thus, y1 is the 

target incomplete variable for imputation, and y2 is the auxiliary complete variable. Also, y1 is 

stored in data[,1] and y2 in data[,2]. This chapter will use this small dataset for 

illustration. As this dataset implies, the target variable for imputation needs to be stored in the 

first column of data, i.e., data[,1], in order to execute the code shown in this chapter. 

data<-read.csv("data.csv",header=T) 

attach(data) 

 



104 

 

 
Figure 6.1: Example of Incomplete Data 

 

The number of multiply-imputed data is set by M, where M > 1. In this example, it is set to 2 so 

that the outputs can be visually presented below. To allow reproducibility, the random number 

seed value needs to be set by function set.seed. This step is necessary, because multiple 

imputation relies on pseudo-random numbers; thus, without setting a seed, there will be no way 

of reproducing the same results. 

M<-2 

set.seed(1223) 

 

Many economic data are skewed to the right in the distribution, i.e., the distribution is not 

multivariate normal, but multivariate log-normal. If this is the case, a sensible option to deal with 

such a variable is to use log-transformation, and the imputed values will be unlogged after 

imputations are completed (Allison, 2002, p.39; Honaker et al., 2011, p.15). In the complete code 

shown in Appendix, if log=TRUE, then the following code log-transforms the data. The default 

setting is that log=FALSE. Obviously, if data are multivariate normal to begin with, this option 

should be set to FALSE. 

if(log){ 

data<-log(data) 

} 

 

6.3 Imputation Stage 

6.3.1 Nonparametric Bootstrap 

The first step to perform multiple ratio imputation is to implement random draws of 𝛍 from 

an appropriate posterior distribution to account for estimation uncertainty. The EMB algorithm 

substitutes the complex process of drawing  𝛍  from the posterior distribution with a 

nonparametric bootstrapping algorithm, which is a resampling method, where the observed 
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sample is used as the pseudo-population. In other words, a resample of size n is randomly drawn 

from this observed sample of size n with replacement, and this process is repeated M times (Shao 

and Tu, 1995; Horowitz, 2001). 

R-function sample(x,size,replace=TRUE) can be used for this purpose, where x is a 

vector from which to sample, size is the number of items to sample, and replace=TRUE 

specifies sampling with replacement. Unfortunately, this function randomly draws a vector, not a 

matrix. In the process of imputation, the imputer must keep a pair of observations for the two 

variables. Thus, our code first creates sampleframe to randomly draw the row number of data, 

which is an nrow(data) by M matrix, where nrow(data) is the number of rows in data. 

sampleframe<-matrix(sample(nrow(data), 

nrow(data)*M, 

replace=TRUE),  

nrow=nrow(data), 

ncol=M) 

 

The resulting matrix obtained from the above code is displayed in Figure 6.2, where each 

column contains a vector of the row numbers randomly drawn from the original data. For example, 

sampleframe[1,1] is 4, meaning that this cell refers to row number 4 in the original data, 

i.e., y1 = 6.219675 and y2 = 8.897375, sampleframe[2,1] is 1, meaning that this cell refers 

to row number 1 in the original data, i.e., y1 = NA and y2 = 10.545612, and so on. 

 
Figure 6.2: Randomly-Drawn Row Numbers 

 

Based on sampleframe, our code makes a random draw of the values of y1 and y2 from the 

original data M times. First, let us create a list named datasub with the elements of NA and 

then replace these NAs by appropriate values in the original data, so that datasub[[i]] 

obtains data[sampleframe[,i],], and the for loop repeats this process M times. In order 
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to use this datasub in the EM algorithm below, datasub is transformed to a matrix. 

datasub<-as.list(rep(NA,M)) 

for(i in 1:M){ 

datasub[[i]]<-as.matrix(data[sampleframe[,i],]) 

} 

 

The resulting bootstrap resamples are shown in Figure 6.3, where datasub[[1]] and 

datasub[[2]] represent the m-th bootstrap resample, respectively. 

 
Figure 6.3: Example of Bootstrap Resamples (M = 2) 

6.3.2 EM Algorithm 

Each bootstrap resample created above is likely to be incomplete. Estimates using these 

resamples are expected to be biased and inefficient. In order to avoid this problem, the EM 

algorithm is used to refine the estimates in bootstrap resamples. 

The EM algorithm calculates an expected value of model likelihood, maximizes the likelihood, 

estimates parameters that maximize the obtained expected values, and updates the distribution. 

After repeating these expectation and maximization steps several times, the value that converged 

is known to be an MLE (Little and Rubin, 2002, pp.166-169; Do and Batzoglou, 2008). R-package 

NORM originally created by Schafer (1997) is a multiple imputation program based on Markov 

chain Monte Carlo (MCMC). The process of multiple imputation by NORM begins with an initial 

estimate of the parameters by the EM algorithm, which is performed by function em.norm (Fox, 

2015). Our code does not use NORM for the sake of generating multiple imputation, but function 
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em.norm is useful for the computational purpose of the EM algorithm. First, use the require 

function to load NORM in R. In the code below, p is the number of columns (variables) in the 

data, para is the number of parameters to be estimated, thetahat is an empty matrix with the 

dimension of M by para, and emmu is an empty matrix with the dimension of M by p. These are 

housekeeping issues to perform the EM algorithm by way of function em.norm. 

require(norm) 

p<-ncol(data) 

para<-p*(p+3)/2+1 

thetahat<-matrix(NA,M,para) 

emmu<-matrix(NA,M,p) 

 

Function prelim.norm takes care of the preliminary manipulations for a matrix of 

incomplete data, which is a necessary step for using em.norm, whose results are stored in 

thetahat. Option showits=FALSE quietly runs em.norm. If the imputer wants to monitor 

the iteration process of EM, then this option should be set to TRUE. Option maxits=1000 sets 

the maximum number of iterations to 1,000. Function getparam.norm produces the estimated 

values of the MLEs, which is stored in emmu. Option corr=FALSE computes the means and 

variance-covariance matrix. The for loop repeats the em.norm function to be applied to 

datasub M times. This process is the essential part of the EMB algorithm, meaning that the EM 

algorithm is applied to each of the M bootstrap resamples.  

for(i in 1:M){ 

thetahat[i,]<-em.norm(prelim.norm(datasub[[i]]), 

showits=FALSE,maxits=1000) 

emmu[i,]<-getparam.norm(prelim.norm(datasub[[i]]), 

thetahat[i,],corr=FALSE)$mu 

} 

 

Now, all of the estimates of the means by the EM algorithm are stored in emmu. Thus, typing 

emmu returns the following matrix in Figure 6.4, where the first column refers to the means for 

the first variable in the data, and the second column refers to the means for the second variable in 

the data. Also, the first row refers to the means in m = 1 and the second row refers to the means 

in m = 2. Note that these are the MLEs of the means. 
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Figure 6.4: MLEs for the Means of y1 and y2 

6.3.3 Implementation of Multiple Ratio Imputation 

Using matrix emmu allows us to estimate multiple ratios of two variables as follows. The 

estimated ratios are stored in beta, which is an empty matrix with the dimension of M by 

ncol(data)-1. Ratio imputation has only two variables; thus, the number of columns in the 

data, i.e., ncol(data), is 2, which means that beta is essentially an M by 1 column vector. 

beta<-matrix(NA,M,ncol(data)-1) 

beta<-emmu[,1]/emmu[,2] 

 

Typing beta returns a vector of M values, where the first value is the ratio in the first model, 

the second value in the second model, and so on. This is 𝛽̃ in equation (5.6). 

 
Figure 6.5: The Values of the Slopes in the Multiple Ratio Imputation Model 

 

As a preparation for multiple ratio imputation, let us define the following matrices. These are 

housekeeping issues to perform multiple ratio imputation. All of the matrices are empty matrices 

with the dimensions of nrow(data) by M. 

imp<-matrix(NA,nrow(data),M) 

resid<-matrix(NA,nrow(data),M) 

e<-matrix(NA,nrow(data),M) 

imp1<-matrix(NA,nrow(data),M) 

imp2<-matrix(NA,nrow(data),M) 

 

Now, everything is ready to perform multiple ratio imputation. The values of beta are 

multiplied by data[,2] which is the values of the second variable in the data. Specifically, 

data[,2] is y2 in our example. Thus, the following code is 𝛽̃𝑌𝑖2 in equation (5.6). The for 

loop repeats this process M times. The imputed values are stored in imp, where imp[,1] is the 

imputed data from m = 1 and imp[,2] is the imputed data from m = 2. 
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for(i in 1:M){ 

imp[,i]<-beta[i]*data[,2] 

} 

 

To complete the process, a small disturbance term needs to be added to the imputed values, 

which is 𝜀𝑖̃ in equation (5.6). In the following code, resid is the differences (residuals) between 

observed values and predicted values. Also, 𝜀𝑖̃ is e[,i], which is normally distributed with the 

mean of 0 and the standard deviation of the residuals, resid[,i]. In the last line, e[,i] is 

added to imp[,i]. The for loop repeats this whole process M times. 

for(i in 1:M){ 

resid[,i]<-data[,1]-imp[,i] 

e[,i]<-rnorm(nrow(data),0,sd(resid[,i],na.rm=TRUE)) 

imp1[,i]<-imp[,i]+e[,i] 

} 

 

Up to this point, all of the values were imputed, both observed and missing. What actually 

needs to be imputed is the missing part of the data only. Therefore, the final step is to replace NA 

with imp1 and to keep the observed value as is. In the following code, imp2 is essentially 𝑌̃𝑖1 

in equation (5.6). If data[j,1] is missing, then imp2[j,i] obtains the imputed value 

imp1[j,i]; otherwise, imp2[j,i] obtains data[j,1]. In the following loop, i refers to 

the number of imputations and j refers to the row number in the data. 

for(i in 1:M){ 

for(j in 1:nrow(data)){ 

if (is.na(data[j,1])=="TRUE"){ 

imp2[j,i]<-imp1[j,i] 

}else{ 

imp2[j,i]<-data[j,1]} 

}} 

 
Remember that log-normal data were log-transformed above. Imputed values must be put back 

to the original scale of incomplete data. The following code unlogs the log-transformed variables. 

if(log){ 

imp2<-exp(imp2) 

data<-exp(data) 

} 

 

Some variables have logical bounds. For instance, economic variables such as turnover cannot 
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be negative. If this is the case, zero=TRUE can be specified in the complete code in Appendix. 

This option forces negative imputed values to be zero. Warning is that this option may suppress 

the correct uncertainty in the imputation model (Honaker et al., 2011, pp.23-25); thus, this option 

should be used cautiously. The default setting is zero=FALSE. 

if(zero){ 

imp2[which(imp2<0)]<-0 

} 

 

Finally, imp2 returns the following two sets of imputed data, because M = 2. The values in 

row [1,] change over columns [,1] to [,2], because these values are imputed values. The values in 

the other rows do no change over columns, because these are observed values. 

 
Figure 6.6: Example of Multiply-Imputed Data 

 

The write.csv function saves the imputed data along with the original data as follows, 

where y1 is the original incomplete variable, y2 is the original auxiliary variable, and imp2 is a 

matrix of M imputed data created above. 

y1<-data[,1]; y2<-data[,2] 

impdata<-data.frame(y1,y2,imp2) 

write.csv(impdata,"mridata.csv",row.names=FALSE) 

 

Figure 6.7 is the output data named mridata in the csv format, which can be reloaded in R or 

any statistical software of an analyst’s choice for subsequent statistical analyses. In this output 

dataset, Column A (y1) is the original incomplete data, Column B (y2) is the original auxiliary 

variable, and Columns C to D (X1, X2) are the multiply imputed data. 
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Figure 6.7: Example of Output Data (csv file) 

 

6.4 Analysis Stage 

6.4.1 Mean and Standard Deviation 

After reading mridata.csv, various statistical analyses can be performed. To calculate the 

mean and the standard deviation of an imputed variable (y1), the analyst first creates two empty 

vectors of means and sds, and repeats the calculations M times by the for loop. Typing means 

and sds returns M values of the means and the standard deviations. 

means<-c(NA); sds<-c(NA) 

for(k in 1:M){ 

means[k]<-mean(imp2[,k]) 

sds[k]<-sd(imp2[,k]) 

} 

 

To calculate a combined point estimate, the analyst simply takes the average by equation (5.7). 

Furthermore, by calculating the standard deviation of means, i.e. sd(means), the analyst can 

estimate the amount of estimation uncertainty due to imputation as a confidence interval. 

mean(means) #Combined Point Estimate of Mean 

mean(sds) #Combined Point Estimate of Std. Dev. 

sd(means) #Estimation Uncertainty 

mean(means)+2*sd(means) #Confidence Interval Upper Limit 

mean(means)-2*sd(means) #Confidence Interval Lower Limit 

 

Let us again use the example data in Figure 6.1. In our specific case, the combined point 

estimate of the means is 6.126, with the combined point estimate of standard deviation 0.868. 

Estimation uncertainty is measured by sd(means), which is the standard deviation of the M 

means, or the standard error of the estimated M means. In our case, it is 0.013. Therefore, the 

analyst can be approximately 95% confident that the true mean of complete data is somewhere 
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between 6.101 and 6.151, after taking the error due to missingness into account. 

6.4.2 Regression of y2 on y1 

Suppose that y2 is the dependent variable and y1 is the explanatory variable in regression. To 

estimate the regression coefficients and the associated standard errors, the analyst first creates 

four empty vectors, reg1, reg2, reg3, and reg4. The for loop repeats the estimation of 

regression models M times. The results are stored in summary(model)$coefficients[i], 

where i= 1 and 3 are regression coefficients and i = 2 and 4 are standard errors. 

reg1<-c(NA); reg2<-c(NA); reg3<-c(NA); reg4<-c(NA) 

for(k in 1:M){ 

model<-lm(data[,2]~data[,k+2]) 

reg1[k]<-summary(model)$coefficients[1] 

reg2[k]<-summary(model)$coefficients[2] 

reg3[k]<-summary(model)$coefficients[3] 

reg4[k]<-summary(model)$coefficients[4] 

} 

 

After the analysis stage is complete, there are M values of outputs. Using equations (5.7) and 

(5.8), the results are combined as follows. 

intercept<-mean(reg1) #Combined Intercept 

WV1<-mean(reg3^2) #Within-Imputation Variance 

BV1<-sum((reg1-intercept)^2)/(M-1) #Between-Imputation Variance 

TV1<-WV1+(1+1/(M))*BV1 #Total Variance 

TSE1<-sqrt(TV1) #Total Std. Error 

tstat1<-intercept/TSE1 #t-statistics for Intercept 

slope<-mean(reg2) #Combined Slope 

WV2<-mean(reg4^2) #Within-Imputation Variance 

BV2<-sum((reg2-slope)^2)/(M-1) #Between-Imputation Variance 

TV2<-WV2+(1+1/(M))*BV2 #Total Variance 

TSE2<-sqrt(TV2) #Total Std. Error 

tstat2<-slope/TSE2 #t-statistics for Slope 

 

Let us again use the example data in Figure 6.1. In our specific case, the combined point 

estimate of the regression intercept is 8.231, with the total standard error of 2.512. Thus, the t-

statistic for the intercept is 3.277. The combined point estimate of the regression slopes is 0.273 

with the total standard error of 0.407. Thus, the t-statistic for the slope is 0.671. 
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6.5 Conclusion 

This chapter outlined how to implement multiple ratio imputation in R, which can be easily 

copied and pasted into R for use (See Appendix 6.1). These codes allow us not only to estimate 

multiple ratio imputation, but also to statistically analyze imputed data by multiple ratio 

imputation. Therefore, this will be a valuable addition to the choice for imputation techniques. 

However, the code described in this chapter is only a first step toward implementing multiple 

ratio imputation; thus, the code is expected to be updated so as to maximize computational 

efficiency and to expand the scope of data that can be handled. Furthermore, the EMB algorithm 

is a general approach composed of the EM algorithm and nonparametric bootstrapping. Therefore, 

multiple ratio imputation can be implemented not only in R, but also in other statistical 

environments. Also, multiple ratio imputation is not limited to the EMB algorithm. Depending on 

the nature of imputation, multiple ratio imputation may be implemented by way of other multiple 

imputation algorithms, such as MCMC and Fully Conditional Specification (FCS) (van Buuren, 

2012). 

Appendix 6.1: Software MrImputation 

Software MrImputation (version 1.0.0), which stands for multiple ratio imputation, is a 

collection of R-functions this chapter explained step by step. This appendix combines each of the 

steps as a set of R-functions mrimpute and mranalyze. 

Appendix 6.1.1: User Manual 

Copy the following codes into the R script and save them as mrimpute.R and 

mranalyze.R on the computer. After reading an appropriate data file in R, use function 

source to read these functions as follows. 

source("mrimpute.R") 

source("mranalyze.R") 

 

Description of mrimpute: This function performs the imputation stage of multiple ratio 

imputation and produces multiply-imputed data named mridata.csv. 
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Usage: mrimpute(data = data, M = 100, seed = 1223, log = FALSE, 
zero = FALSE, outdata = TRUE) 

 

Arguments: 

data A data frame that contains the incomplete variable targeted for imputation. The 

imputer can specify any name of the data to be used. 
M The number of multiply-imputed datasets. The imputer can set any number. 
seed Random number seed value. Any number can be specified. 
log An option to log-transform the data. The default is FALSE. If log-transformation 

is optimal, then this option should be set to TRUE. 
zero An option to suppress negative values to zero. The default is FALSE. If negative 

imputed values are unacceptable, this option should be set to TRUE. 
outdata An option to save the imputed data as a csv file. The default is TRUE. 

 

Description of mranalyze: This function performs the analysis stage. It returns the mean and 

the standard deviation of the imputed variable. It can also return the result of regression analysis 

of y2 on y1 if reg=TRUE. 

Usage: mranalyze(data, reg = FALSE) 

Arguments: 
data The mridata.csv created by mrimpute. 
reg An option to perform regression analysis. The default is FALSE. If the analyst 

wants to see the result of regression analysis, this option should be set to TRUE. 

Appendix 6.1.2: R-Function mrimpute: Imputation Stage 

mrimpute<-function(data,M,seed,outdata=TRUE,log=FALSE,zero=FALSE){ 

data<-data; M<-M; seed<-seed; set.seed(seed) 

if(log){data<-log(data)} 

sampleframe<-matrix(sample(nrow(data),nrow(data)*M,  

replace=TRUE),nrow=nrow(data),ncol=M) 

datasub<-as.list(rep(NA,M)) 

for(i in 1:M){datasub[[i]]<-as.matrix(data[sampleframe[,i],])} 

suppressMessages(suppressWarnings(require(norm))) 

p<-ncol(data); para<-p*(p+3)/2+1; thetahat<-matrix(NA,M,para) 

emmu<-matrix(NA,M,p) 

for(i in 1:M){thetahat[i,]<-em.norm(prelim.norm(datasub[[i]]), 

showits=FALSE,maxits=1000) 

         emmu[i,]<-getparam.norm(prelim.norm(datasub[[i]]), 

thetahat[i,],corr=FALSE)$mu} 

imp0<-as.list(rep(NA,M)); imp<-matrix(NA,nrow(data),M) 

resid<-matrix(NA,nrow(data),M); e<-matrix(NA,nrow(data),M) 

imp1<-matrix(NA,nrow(data),M); beta<-matrix(NA,M,ncol(data)-1) 

beta<-emmu[,1]/emmu[,2] 

for(i in 1:M){imp[,i]<-beta[i]*data[,2]} 

for(i in 1:M){resid[,i]<-data[,1]-imp[,i] 

e[,i]<-rnorm(nrow(data),0,sd(resid[,i],na.rm=TRUE)) 

imp1[,i]<-imp[,i]+e[,i]} 

imp2<-matrix(NA,nrow(data),M) 

for(i in 1:M){imp2[,i]<-data[,1]} 
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for(i in 1:M){ 

 for(j in 1:nrow(data)){ 

  if (is.na(data[j,1])=="TRUE"){ 

  imp2[j,i]<-imp1[j,i] 

  }else{ 

  imp2[j,i]<-data[j,1]} 

}} 

if(log){imp2<-exp(imp2);data<-exp(data)} 

if(zero){imp2[which(imp2<0)]<-0} 

impdata<-data.frame(data, imp2) 

  if (outdata){ 

write.csv(impdata,"mridata.csv",row.names=FALSE) 

} 

} 

Appendix 6.1.3: R-Function mranalyze: Analysis Stage 

mranalyze<-function(data,reg=FALSE){ 

data<-data; M<-ncol(data)-2; means<-c(NA); sds<-c(NA) 

 

for(k in 1:M){ 

means[k]<-mean(data[,k+2]) 

sds[k]<-sd(data[,k+2]) 

} 

meanimp<-mean(means);BISD<-sd(means);UL<-mean(means)+2*sd(means);LL<-

mean(means)-2*sd(means);sd<-mean(sds) 

outmatrix1<-matrix(c(meanimp, sd, BISD, UL, LL)) 

colnames(outmatrix1)<-"Summary" 

rownames(outmatrix1)<-c("mean","sd","BISD","95%CIUL","95%CILL") 

 

if(reg){ 

reg1<-c(NA); reg2<-c(NA); reg3<-c(NA); reg4<-c(NA) 

for(k in 1:M){ 

model<-lm(data[,2]~data[,k+2]) 

reg1[k]<-summary(model)$coefficients[1] 

reg2[k]<-summary(model)$coefficients[2] 

reg3[k]<-summary(model)$coefficients[3] 

reg4[k]<-summary(model)$coefficients[4] 

} 

 

intercept<-mean(reg1) 

WV1<-mean(reg3^2) 

BV1<-sum((reg1-intercept)^2)/(M-1) 

TV1<-WV1+(1+1/(M))*BV1 

TSE1<-sqrt(TV1) 

tstat1<-intercept/TSE1 

 

slope<-mean(reg2) 

WV2<-mean(reg4^2) 

BV2<-sum((reg2-slope)^2)/(M-1) 

TV2<-WV2+(1+1/(M))*BV2 

TSE2<-sqrt(TV2) 

tstat2<-slope/TSE2 

 

outmatrix2<-matrix(c(intercept, TSE1, tstat1, slope, TSE2, tstat2)) 

colnames(outmatrix2)<-"Regression" 

rownames(outmatrix2)<-c("intercept","TSE(intercept)" ,"t-
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Stat(intercept)","slope","TSE(slope)" ,"t-Stat(slope)") 

} 

 

if(reg){ 

result<-list(outmatrix1, outmatrix2) 

return(result) 

}else{ 

result<-list(outmatrix1) 

return(result) 

} 

} 
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7 Conclusion 

This dissertation was about how to deal with missing data in official economic statistics. 

Chapter 2 unveiled the current practice among the UNECE member states and found that ratio 

imputation was often used in official economic statistics. Furthermore, it proposed multiple 

imputation as a suitable imputation method for public-use microdata. Chapter 3 gave a unifying 

approach to ratio imputation with a novel way of identifying an appropriate ratio imputation 

model based on the magnitude of heteroskedasticity. Chapter 4 compared the existing three 

multiple imputation algorithms and found that the EMB algorithm would be more useful than the 

MCMC-based methods. Chapter 5 presented a novel application of the EMB algorithm to create 

multiple ratio imputation and demonstrated its usefulness by testing it against traditional methods 

using a variety of simulation data. Chapter 6 provided brand-new software for multiple ratio 

imputation. The author believes that these findings will be important additions to the literature of 

missing data in particular and official statistics in general. 

Future research may deal with the following issues. The method proposed in Chapter 3 is still 

a starting point to determine the value of 𝜃. Following the idea of Tukey’s boxplot, the method 

in Chapter 3 divided the data into four groups based on the five number summaries. Preliminary 

research showed that if the data were divided into ten groups (instead of four groups), the results 

were not as good as those of the proposed methods. However, the appropriate number of groups 

may be a function of the number of observations. This issue should be further investigated in 

future research. Also, an analytical method may be possible by taking the logarithm of residuals. 

Future research should develop this analytical method, and should test it against the proposed 

method of this dissertation. Furthermore, ratio imputation in this dissertation is bivariate by 

definition. Even when many auxiliary variables are available, the model can only use one 

auxiliary variable. Following Olkin (1958), future research should develop multivariate ratio 

imputation. 
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