SEIKEI University Repository >
02:学位論文(Dissertation) >
01:博士論文 >
02:博士(理工学) >
このアイテムの引用には次の識別子を使用してください:
http://hdl.handle.net/10928/951
|
タイトル: | Incomplete Data Analysis for Economic Statistics |
その他のタイトル: | 経済統計のための不完全データ解析 |
著者: | 高橋, 将宜 Takahashi, Masayoshi |
キーワード: | Missing data multiple imputation ratio imputation official statistics 欠測データ 欠損 多重代入法 比率代入法 補完 補定 公的統計 |
発行日: | 2017年10月13日 |
抄録: | Incomplete data are ubiquitous in social sciences; as a consequence, available data are inefficient and often biased. This dissertation deals with the problem of missing data in official economic statistics. Building on the practices of the United Nations Economic Commission for Europe (UNECE), the first half of the dissertation focuses on single imputation methods. After revealing that single ratio imputation is often used for economic data in the current practices of official statistics, this study unifies the three ratio imputation models under the framework of weighted least squares and proposes a novel estimation strategy for selecting a ratio imputation model based on the magnitude of heteroskedasticity. After showing that multiple imputation is suited for public-use microdata, the latter half of the dissertation focuses on multiple imputation methods. From a new perspective, this dissertation compares the three computational algorithms for multiple imputation: Data Augmentation (DA), Fully Conditional Specification (FCS), and Expectation-Maximization with Bootstrapping (EMB). It is found that EMB is a confidence proper multiple imputation algorithm without between-imputation iterations, meaning that EMB is more user-friendly than DA and FCS. Based on these findings, the current study proposes a novel application of the EMB algorithm to ratio imputation in order to create multiple ratio imputation, the new multiple imputation version of ratio imputation, providing brand-new software MrImputation implemented in R. Combining all of these findings, this dissertation will be an important addition to the literature of missing data analysis and official economic statistics. |
内容記述: | 成蹊大学大学院 理工学研究科 理工学専攻情報科学コース 論文主査名: 岩崎 学 |
URI: | http://hdl.handle.net/10928/951 |
学位授与番号: | 32629乙第85号 |
学位授与年月日: | 2017-09-06 |
学位名: | 博士(理工学) |
学位授与機関: | 成蹊大学 |
出現コレクション: | 02:博士(理工学)
|
このリポジトリに保管されているアイテムは、他に指定されている場合を除き、著作権により保護されています。
|